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Representations of the quadratic algebra and partially
asymmetric diffusion with open boundaries

Fabian H L Essler† and Vladimir Rittenberg‡
Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn, Germany

Received 7 August 1995, in final form 8 March 1996

Abstract. We consider the one-dimensional partially asymmetric exclusion model with open
boundaries. The model describes a system of hard-core particles that hop stochastically in both
directions with different rates. At both boundaries particles are injected and extracted. By means
of the method of Derridaet al the stationary probability measure can be expressed as a matrix-
product state involving two matrices forming a Fock-like representation of a general quadratic
algebra. We obtain the representations of this algebra, which were unknown in the mathematical
literature and use the two-dimensional one to derive exact expressions for the density profile and
correlation functions. Using the correspondence between the stochastic model and a quantum
spin chain, we obtain exact correlation functions for a spin-1

2 HeisenbergXXZ chain with
non-diagonal boundary terms. Generalizations to other reaction–diffusion models are discussed.

1. Introduction

One-dimensional reaction–diffusion processes have recently attracted much attention for
a variety of reasons. Pure diffusion models have been studied in relation with interface
growth [1], traffic flow [2], the dynamics of shocks [3, 4] and magnetophoresis of tagged
polymers [5]. More general reaction–diffusion models are of interest from a mathematical
point of view due to their relation to integrable quantum chain Hamiltonians [6]. It is
interesting to note the important role played by the boundary conditions in these models [7],
which completely control the physics in some cases. For the case of two-state models, for
example, in the corresponding quantum chain Hamiltonians (which areXXZ models) the
boundary conditions generally break the particle numberU(1) symmetry and are not easily
treatable by the usual methods like the Bethe ansatz [8, 9]. The problem is that although the
chains can be shown to be integrable [10], the Bethe ansatz has not so far been constructed
due to the lack of a reference state.

An important step forward in these types of problems was made by Derridaet al
[11] in the case of completely asymmetric diffusion with particle injection at one end of
the chain, and particle extraction at the other end of the chain. They showed that there
exists a recursion, which relates the probability distribution of the steady state forL sites
to the one forL − 1 sites. An equivalent formulation of this property was given by
Derrida, Evans, Hakim and Pasquier (DEHP) [12], who demonstrated that the probability
distribution can be written in a factorized form with coefficients that are notc-numbers
but (infinite-dimensional) matrices. For the two-state model there are two matrices which
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form a Fock representation of the quadratic algebra. Using representations of this algebra
one can compute in principle all correlation functions. In particular, the density profile was
determined in [12, 13], and in a special case (when the injection rate is equal to the extraction
rate) even the two-point correlation function [14] was obtained. If one considers the more
general problem with particle injection and extraction at both ends, and partially asymmetric
diffusion, the DEHP approach is still applicable, but the representations of the quadratic
algebra were not known. In a remarkable paper [15], Sandow was able to compute some
important matrix elements in the enveloping algebra, which allowed him to compute the
currents and to obtain the phase diagram, which coincides with the mean-field predictions.

In the present paper we start by determining all Fock representations of the most general
quadratic algebra, which depends on seven parameters (section 2). They might be of
interest in other physical contexts as well. It turns out that the representations can be either
finite-dimensional or infinite-dimensional. For each finite-dimensional representation one
obtains a constraint equation for the seven parameters. This constraint depends on the
dimension of the representation. The matrix elements of the two matrices appearing in the
quadratic algebra are given by recursion relations. We show that for some special cases
these recursions can be easily solved.

Next we review the connection between the steady-state probability distribution and the
ground state of certain (in general non-Hermitian) quantum chains (section 3). In section 4
we give a summary of theDEHP ansatz and establish the connection with the quadratic
algebra discussed in section 2. In section 5 we consider the most general master equation
for one-dimensional systems with two-body interactions (one has twelve independent rates)
and particle injection and extraction at both boundaries and apply theDEHP ansatz. One
gets a quadratic algebra and two additional quadratic relations on the matrices. This implies
that only finite-dimensional representations have a chance to be useful. We found that
there exists a one-dimensional representation with three conditions for the twelve rates and
the four parameters describing the injection and extraction of particles at the ends of the
chain. The question of the existence of higher-dimensional representations and their physical
relevance is left open. In appendix B we study the applicability of theDEHP formalism to
the steady state of a master equation with three-body interactions. We show that in this
case one obtains, as expected, cubic algebras. Their representations and physical interest
remains to be studied.

After these mathematical investigations we turn to a detailed study of the problem of
partially asymmetric diffusion with particle injection/extraction at both boundaries. We
start with a review of the known results in section 6, using the phase diagram obtained
by Sandow [15] as a basis. In the following sections we concentrate on the application
of the two-dimensional representation of the quadratic algebra to concrete calculations. In
sections 7 and 8 we show that as a result of the constraint equation for the existence of the
representation one can cover parts of the phases AII , BII , the complete phases AI and BI as
well as the coexistence line (in terms of the definitions of Schütz and Domany [13]). The
calculation of the density profiles and two-point correlation functions in the low- and high-
density phases is presented in section 9. One remarkable result is that the density around
the centre of the chain has a simple expression in terms of the parameters of the problem
and that it coincides with the mean-field results (which are derived in appendix F). The
density profile and two-point function on the coexistence line are presented in section 10.

Some by-products of our investigations are presented in the appendixes. In appendix C
we give some identities concerning normal-ordered expressions ofq-oscillators. In
appendix D we show how theDEHP ansatz can be used to construct irreducible
representations of the quantum groupUq(SU(2)). We close with a discussion of our results
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and some remarks on the time dependence of correlation functions.

2. Fock representations of the quadratic algebra

We are interested in Fock representations of the most general quadratic algebra

x1A
2 + x2AB + x3BA + x4B

2 = x5A + x6B + x7 (1)

A|V 〉 = 0 〈W |B = 0 〈W |V 〉 6= 0 . (2)

Here xi are complex parameters and quantities of physical interest are given by vacuum
average values of monomials written in terms ofA andB, e.g.

〈W |Ar1Br2 . . . Brn |V 〉 . (3)

Obviously (2) generalizes the algebra of creation and annihilation operators and itsq-
deformations. As far as we know the problem formulated above has not been considered
in the mathematical literature (presumably because up to now there was no motivation to
do so). General quadratic algebras were studied in [16] but no Fock representations were
considered. We will show in the present work that solving the above problem allows for
the computation of concentration profiles and various correlation functions in the physical
problem of partially asymmetric diffusion with open boundaries.

One can ask the question about the conditions on thexi ’s in (2) such that algebra
determines the vacuum expectation value (3). This implies that the system of equations for
words of length two, three, etc have solutions. Direct calculations show that an infinite set
of inequalities has to be satisfied

x2 6= 0 x1x4 − x2
2 6= 0 x2(x

2
2 − x1x4) + (x3 − x2)x1x4 6= 0 etc. (4)

In section 4 we will give, in a different parametrization, a simpler expression for these
conditions. Instead of solving linear equations for words of different lengths it is useful to
look for matrix representations of the algebra. Once those are known the calculation of the
quantities (3) is simple. We are interested for obvious reasons in the representations of the
smallest dimension because this is sufficient to compute the relevant quantities. As we are
going to show the representations of the quadratic algebra are infinite-dimensional unless
there exist certain constraints on the parametersxi . The simplest such constraint isx7 = 0,
for which the representation is one-dimensional:A = B = 0. From now on we will take
x7 6= 0. First we consider the casex5 6= 0 6= x6. We then define

Ã = x5

x7
A B̃ = x6

x7
B (5)

in terms of which the algebra reads

z1Ã
2 + z2ÃB̃ + z3B̃Ã + z4B̃

2 = Ã + B̃ + 1 (6)

where thezi are given in terms of thexj and where

〈W |B̃ = Ã|V 〉 = 0 〈W |V 〉 6= 0 . (7)

It is convenient to define

ξ = −z1

z2
= −x1x6

x2x5
λ = −z3

z2
= −x3

x2

η = −z4

z2
= −x4x5

x2x6
z2 = x2x7

x5x6
.

(8)
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One can show (see appendix A) that through a similarity transformation the matricesÃ and

B̃ can be brought to a tridiagonal form with|V 〉 =
 1

0
...
0

 and 〈W | = (
1 0

... 0
)
. Using this

fact together with equation (6) we obtain

Ã =


a1 f1 0 0 0 0 0. . .

α1ηf1 a2 f2 0 0 0 0. . .

0 α2ηf2 a3 f3 0 0 0. . .

0 0 α3ηf3 a4 f4 0 0. . .

0 0 0 α4ηf4 a5 f5 0 . . .

. . . . . .

 (9)

B̃ =


b1 α1ξf1 0 0 0 0 0. . .
f1 b2 α2ξf2 0 0 0 0. . .

0 f2 b3 α3ξf3 0 0 0. . .

0 0 f3 b4 α4ξf4 0 0. . .

0 0 0 f4 b5 α5ξf5 0 . . .

. . . . . .

 . (10)

The quantitiesαn, an, bn andfn are given recursively. First theαn’s are to be determined
from

αn = 1 + λαn−1

1 − ηξαn−1
α1 = 0 . (11)

Next one determinesan andbn from(
an+1

bn+1

)
= M

[(
ξ(1 − αn) λ + ηξαn

λ + ηξαn η(1 − αn)

) (
an

bn

)
+ 1

z2

(
1 + ξαn

1 + ηαn

)]
M = 1

ηξ(1 + λαn)2 − (1 − ηξαn)2

( −η(1 + λαn) − 1 + ηξαn

−1 + ηξαn − ξ(1 + λαn)

)
(12)

a1 = 0 = b1 .

Finally thefn’s are then given as

f 2
n = f 2

n−1

λ + 2ηξαn−1 − ηξα2
n−1

1 − 2ηξαn − ληξα2
n

+ ξa2
n + ηb2

n + (λ − 1)anbn + (an + bn + 1)/z2

1 − 2ηξαn − ληξα2
n

f0 = 0 .

(13)

For later use we give the first few values

α2 = 1 α3 = 1 + λ

1 − ηξ

a2 = 1 + η

z2(1 − ηξ)
b2 = 1 + ξ

z2(1 − ηξ)
(14)

f 2
1 = 1

z2
f 2

2 = λ + 1

z2
2(1 − 2ηξ − ληξ)

[
z2 + (1 + ξ)(1 + η)

(1 − ηξ)2

]
.

We note that forλ = −1 it follows thatf2 = 0 and we thus obtainonly two-dimensional
representationslike for one fermion (observe the appearance of an anticommutator in (6)).
The recursion (11) forαn can be solved by redefining

αn = 1

ηξ

(
1 +

√
λ + ηξ

un+1

un

)
(15)
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where theun’s satisfy the following recursion relation:

un+1 + un−1 = − 1 + λ√
λ + ηξ

un u1 = 1 u2 = − 1√
λ + ηξ

. (16)

This is recognized as the special casex = −(1 + λ)/2(λ + ηξ) of the recursion relation
for Chebyshev polynomialsUn+1(x) + Un−1(x) = 2xUn(x). Using the representation
Un(x) = sin((n − 1) arccos(x) + φ)/sin(φ) and taking into account the initial conditions
we arrive at the result

αn = 1

ηξ

[
1 +

√
λ + ηξ

sin((n − 1)θ + φ)

sin((n − 2)θ + φ)

]
φ = arctan

[√
4ηξ − (1 − λ)2

λ − 1

]
θ = arccos

[
− 1 + λ

2
√

λ + ηξ

]
.

(17)

The recursion (12) foran and bn can be decoupled into recursion relations forãn =√
ξan + √

ηbn and b̃n = √
ξan − √

ηbn:

ãn+1 = g+
n+1ãn + h+

n+1 b̃n+1 = g−
n+1b̃n + h−

n+1 (18)

whereh±
n+1 = c1 ± c2, g±

n+1 = c3 ± c4, and

c1 = −
√

ξ
η(1 + λαn)(1 + ξαn) + (1 − ηξαn)(1 + ηαn)

z2(ηξ(1 + λαn)2 − (1 − ηξαn)2)

c2 = −√
η
(1 + ξαn)(1 − ηξαn) + ξ(1 + ηαn)(1 + λαn)

z2(ηξ(1 + λαn)2 − (1 − ηξαn)2)

c3 = − (λ + ηξ)(1 − ηξα2
n)

ηξ(1 + λαn)2 − (1 − ηξαn)2

c4 = −
√

ηξ(λ + 1)(1 + (λ − 1)αn + ηξα2
n)

ηξ(1 + λαn)2 − (1 − ηξαn)2
.

(19)

It is hard to simplify the recursion relations further. Using the expression (17) for theαn’s
and (19) one can derive formulae foran, bn and hencefn. The resulting expressions are
obviously very cumbersome. From the expressions (9) and (10) forÃ andB̃ it follows that
the condition for having ann-dimensional representation is simplyfn = 0. As one can
see from the form of the recurrence relations this constraint is a complicated function of
λ, ξ, η andz2. This is the reason why we will use for applications only the two-dimensional
representation (f2 = 0), for which the matrix elements of̃A and B̃ are given by (14).

Let us now consider the casex5 = x6 = 0. The cases where onlyx5 or x6 vanishes can
be studied in a similar way and thus will not be considered in detail here. The algebra for
casex5 = x6 = 0 is

z1A
2 + z2AB + z3BA + z4B

2 = 1 (20)

wherezi = xi/x7. We define, as in (8)

ξ = −z1

z2
λ = −z3

z2
η = −z4

z2
. (21)

The infinite-dimensional representation of (20) is of the form (9), (10) with vanishing
diagonal termsan = bn = 0, ∀n, whereη, ξ, λ are defined in (21) and whereαn andfn are
given by

αn = 1 + λαn−1

1 − ηξαn−1
α1 = 0

f 2
n = f 2

n−1

λ + 2ηξαn−1 − ηξα2
n−1

1 − 2ηξαn − ληξα2
n

+ 1

z2(1 − 2ηξαn − ληξα2
n)

f 2
0 = 0 .

(22)
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Apart from this infinite-dimensional representation there are two kinds of finite-dimensional
ones. The first kind is simply obtained by imposing the constraintfN = 0 on the
parameterszi , which leads to the decoupling of anN × N block in the upper left corner
of the infinite-dimensional representation ofA andB discussed above. The resulting finite-
dimensional representation is given in terms ofN × N matricesA and B with vanishing
diagonal elements.

The matricesA andB of the second type ofN × N representation take the following
form:

A =



0 f1 0 0 0 0 0. . .
α1ηf1 0 f2 0 0 0 0. . .

0 α2ηf2 0 f3 0 0 0. . .

0 0 α3ηf3 0 f4 0 0. . .

0 0 0 α4ηf4 0 f5 0 . . .

. . . . . .

. . . . . .

. . . . . . αN−2ηfN−2 0 fN−1

. . . . . . 0 αN−1ηfN−1 aN


(23)

B =



0 α1ξf1 0 0 0 0 0. . .
f1 0 α2ξf2 0 0 0 0. . .

0 f2 0 α3ξf3 0 0 0. . .

0 0 f3 0 α4ξf4 0 0. . .

0 0 0 f4 0 α5ξf5 0 . . .

. . . . . .

. . . . . .

. . . . . . fN−2 0 αN−1ξfN−1

. . . . . . 0 fN−1 bN


(24)

whereαn andfn are determined by the recursion (22). The representation (23), (24) exists
provided that

α2
Nηξ = 1 . (25)

The variablesaN andbN are obtained from the equations

bN = ξαNaN

(−λ − 2ξηαN−1 + ηξα2
N−1)f

2
N−1 = ξa2

N + ηb2
N + (λ − 1)aNbN + 1

z2
.

(26)

We are going to close this section with two cases, for which the recurrence relations
can be solved in a trivial way.

• If λ = −ηξ 6= −1 (this case is as we will see physically interesting) the following
simplifications take place forx5 6= 0 6= x6:

an = a = 1 + 2η − λ

z2(1 + λ)2
∀n > 3 a1 = 0 a2 = 1 + η

z2(1 + λ)

bn = b = 1 + 2ξ − λ

z2(1 + λ)2
∀n > 3 b1 = 0 b2 = 1 + ξ

z2(1 + λ)

f 2
n = f 2 = ξa2 + ηb2 + (λ − 1)ab + (a + b + 1)/z2

(1 + λ)2
∀n > 3

f 2
1 = 1

z2
f 2

2 = 1

z2(1 + λ)2

(
1 + λ + 1 + ξ + η − λ

z2(1 + λ)

)
.

(27)
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Note that in this case there exist only2D (f2 = 0), 3D (f3 = 0) and infinite-dimensional
representations! Ifx5 = x6 = 0, one has an infinite-dimensional representation with
vanishing diagonal elementsan = bn = 0, ∀n with

αn = 1 ∀n > 2

f 2
1 = 1

z2
f 2

2 = 1

z2(1 + λ)
f 2

n = 1

z2(1 + λ)2
∀n > 3

(28)

whereη, ξ, λ are given by (21).
• 0 = η = ξ

Here it is possible to choosẽB = Ã†, and

αn = 1 − λn−1

1 − λ
an = 1

z2

(
1 − λn−1

1 − λ

)
f 2

n = 1

z2

(
1 − λn

1 − λ

)(
1 + 1

z2

1 − λn−1

1 − λ

) (29)

where we have assumedx5 6= 0 6= x6. A similar simplification holds ifx5 = 0 or
x6 = 0. Of particular physical interest is the caseλ = 1, which exhibits additional
simplifications

αn = n − 1 an = n − 1

z2
f 2

n = n

z2
+ n(n − 1)

z2
2

. (30)

3. The master equation and the quantum chain Hamiltonian

Let us consider a one-dimensional open chain withL sites. On each sitek (k = 1, 2, . . . , L)

we allow for two configurations described by means of the variableτk, which takes the two
values 0 and 1. Forτk = 0 the sitek is empty (vacancy), forτk = 1 the sitek is occupied
by a moleculeA.

At time t the probability of finding a certain configuration of molecules and vacancies
on the chain is given by the probability distribution

PL (τ1, τ2, . . . τL|t) . (31)

If we assume that interaction between molecules is described by two-body processes only
(three-body processes are considered in appendix B), the time evolution of the system is
given by a master equation of the form

∂PL

∂t
= −

L−1∑
k=1

∑
γk,γk+1

(
Hk,k+1

)γk,γk+1

τk,τk+1
PL(τ1, τ2, . . . , τk−1, γk, γk+1, τk+2, . . . , τL|t)

−
∑
γ1

(h1)
γ1
τ1

PL(γ1, τ2, . . . , τL|t) −
∑
γL

(hL)γL

τL
PL(τ1, τ2, . . . , τL−1, γL|t)

(32)

where the boundary contributionsh1 andhL describe injection (extraction) of particles with
ratesα andδ (γ andβ) at sites 1 andL

h1 =
(

α −γ

−α γ

)
hL =

(
δ −β

−δ β

)
(33)
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and where

(
Hk,k+1

)γk,γk+1

τk,τk+1
=


∑′

βk,βk+1

[0k,k+1]γk,γk+1
βk,βk+1

γj = τj j = k, k + 1

−[0k,k+1]γk,γk+1
τk,τk+1

otherwise .
(34)

Here [0k,k+1]γk,γk+1
τk,τk+1 represents the probability per unit time that the configuration(γk, γk+1)

on neighbouring sitesk andk + 1 changes into the configuration(τk, τk+1) and
∑′ denotes

the sum where the term(γk, γk+1) = (βk, βk+1) is excluded. The following processes are
included in the master equation (with 0 a vacancy(τ = 0) andA a molecule(τ = 1)):

Diffusion to the right: A + 0 → 0 + A (rate010
01)

Diffusion to the left: 0+ A → A + 0 (001
10)

Coagulation at the right: A + A → 0 + A (011
01)

Coagulation at the left: A + A → A + 0 (011
10)

Decoagulation at the right:A + 0 → A + A (010
11)

Decoagulation at the left: 0+ A → A + A (001
11)

Birth at the right: 0+ 0 → 0 + A (000
01)

Birth at the left: 0+ 0 → A + 0 (000
10)

Death at the right: 0+ A → 0 + 0 (001
00)

Death at the left: A + 0 → 0 + 0 (010
00)

Pair-annihilation: A + A → 0 + 0 (011
00)

Pair-creation: 0+ 0 → A + A (000
11) .

(35)

Reaction–diffusion models of the type described above can be mapped to quantum spin
chains in the following way [6]: a basis of the quantum-mechanical Hilbert spaceH
(isomorphic to the tensor product⊗L

n=1C
2) is defined as

|{τ }〉 = |τ1 . . . τL〉 (36)

and the inner product is taken as

〈{τ }|{τ ′}〉 =
L∏

j=1

δτj ,τ
′
j
. (37)

This induces a map of the probability distributionPL to a state inH
|P 〉 =

∑
{τ }

PL(τ1 . . . τL|t)|{τ }〉 (38)

and the master equation (32) then implies an imaginary-time Schrödinger equation

∂|P 〉
∂t

= −Ĥ |P 〉 . (39)

HereĤ is a quantum Hamiltonian defined in terms of a basisE
αβ

k (which can be represented
as 2× 2 matrices with entriesEαβ

γ δ = δαγ δβδ) of quantum operators on thekth site of the
lattice via

Ĥ =
L−1∑
k=1

(Hk,k+1)
αβ

γ δE
γα

k E
δβ

k+1 + (h1)
α
γ E

γα

1 + (hL)αγ E
γα

L (40)

whereh1, hL andHk,k+1 are defined in (34). Note that in general the HamiltonianĤ will
be non-Hermitian. It is easy to see that

〈0|Ĥ = 0 (41)
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where〈0 | is given by

〈0| =
∑
{τ }

〈{τ }| =
〈(

1

1

)
⊗

(
1

1

)
⊗ · · · ⊗

(
1

1

)∣∣∣∣ . (42)

Using equation (39) it follows from (41) that〈0| is a left ‘stationary’ state. Assuming that
this is the unique left ‘stationary’ state and given a unique right stationary state

|0〉 =
∑
{τ }

Ps({τ })|{τ }〉 (43)

the average of the observableX (τ1, . . . τL) = X({τ }) is defined as

〈X〉 =
∑
{τ }

X({τ })Ps({τ })

= 〈0|X|0〉 . (44)

An example with which we will be concerned in most of this paper is the case of
partially asymmetric diffusion, which corresponds to the choice of rates

[0k,k+1]10
01 = p [0k,k+1]01

10 = q (45)

(all other rates are taken to be zero) the quantum HamiltonianĤ obtained by the above
mapping is related to anXXZ spin chain by a similarity transformation

HXXZ = UĤU−1 U =
L∏

j=1

(
E00

j + E11
j 3Qj−1

) =
L∏

j=1

(
1 0
0 3Qj−1

)
(46)

whereQ = √
q/p, 3 is a free parameter and

1√
pq

HXXZ = − 1
2

L−1∑
j=1

[
2(σ+

j σ−
j+1 + σ−

j σ+
j+1) + 1

2(Q + Q−1)σ z
j σ z

j+1

+ 1
2(Q − Q−1)(σ z

j+1 − σ z
j ) − 1

2(Q + Q−1)
] + B1 + BL

(47)

B1 = σ z
1
α − γ

2
√

pq
− σ−

1

3α√
pq

− σ+
1

γ

3
√

pq
+ α + γ

2
√

pq

BL = σ z
L

δ − β

2
√

pq
− σ−

L

3δ√
pq

QL−1 − σ+
L

β

3
√

pq
Q1−L + β + δ

2
√

pq
.

This is theUq(SU(2))-invariant quantum spin chain [17] with added boundary terms
B1 and BL. Notice that the boundary terms contain nondiagonal contributions (σ±

1 , σ±
L )

with L-dependent coefficients. In the absence of the boundary terms the spectrum of the
Hamiltonian is massive. As is shown below the boundary terms will generate phase
transitions with massless phases. Although the Hamiltonian (48) can be shown to be
integrable [10], the Bethe ansatz so far has not been constructed due to the lack of a
reference state.

We note that the similarity transformation (46) does not change averages of observables

〈0|X|0〉 = 〈0|U−1UXU−1U |0〉 = U〈0|XU |0〉U . (48)

Thus zero-temperature equal time correlation functions of theXXZ quantum spin chain
and (stationary-state) averages of the partially asymmetric diffusion model are related in the
following way

〈σ z
j 〉 =U〈0|σ z

j |0〉U = 2〈τj 〉 − 1

〈σ z
j σ z

k 〉 =U〈0|σ z
j σ z

k |0〉U = 4〈τj τk〉 + 1 − 2〈τj 〉 − 2〈τk〉 (49)

〈σ z
j σ z

k 〉conn = 4〈τj τk〉conn
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whereconn denotes connected correlation functions. This means that all results concerning
averages in the partially asymmetric diffusion model obtained in this paper can be
immediately applied to the case of theXXZ chain described above.

4. The DEHP ansatz

In a remarkable paper [12] it was shown that for the case of asymmetric diffusion the
problem of determining the probability distributionPL(τ1, . . . τL) for a stationary statecan
be formulated in a completely algebraic framework. We now briefly review the relevant
results. All rates except [0k,k+1]10

01 = p and [0k,k+1]01
10 = q (k = 1, . . . , L−1) are taken to be

zero, and the boundary conditions are chosen according to (33): particles are injected at sites
1 andL with ratesα andδ and extracted with ratesγ andβ respectively. The algebraization
of the problem of determining theunnormalizedprobability distributionPL(τ1 . . . τL) of a
stationary state is performed in two steps: one first makes an ansatzPL(τ1, . . . τL) in the
form of a matrix-product state [12, 18]

PL(τ1, . . . , τL) = 〈W |
L∏

i=1

(τiD + (1 − τi)E)|V 〉 . (50)

Here D and E are in general infinite-dimensional matrices and〈W | and |V 〉 are vectors
connected with the boundary conditions. The normalization factor is obviously given by

ZL = 〈W |CL|V 〉 C = D + E . (51)

In the second step the following sufficient conditions forPL to be a stationary solution of
the master equation are imposed∑
γk,γk+1

(
Hk,k+1

)γk,γk+1

τk,τk+1
PL(τ1, τ2 . . . τk−1, γk, γk+1, τk+2 . . . τL)

= xτk
PL−1(τ1 . . . τk−1τk+1 . . . τL) − xτk+1PL−1(τ1 . . . τkτk+2 . . . τL) (52)∑

γ1

(h1)
γ1
τ1

PL(γ1τ2 . . . τL) = −xτ1PL−1(τ2 . . . τL)∑
γL

(hL)γL

τL
PL(τ1 . . . τL−1γL) = xτL

PL−1(τ1 . . . τL−1) .
(53)

Inserting (50) into (52), (53) leads to algebraic relations between the matricesD andE and
leads to conditions for the action ofD andE on |V 〉 and〈W | [12] (one finds thatx0 = −x1

and then setsx1 = 1)

pDE − qED = D + E

(βD − δE)|V 〉 = |V 〉
〈W |(αE − γD) = 〈W |
〈W |V 〉 6= 0 .

(54)

It is easy to see that forαβ = γ δ no representations of (54) exist. This can be seen by
considering the inner product

〈W | (αE − γD) |V 〉 . (55)

Evaluating (55) once by acting to the left and once by acting to the right using that
αE − γD = − γ

β
(βD − δE) (which holds becauseαβ = γ δ) we obtain

〈W |V 〉 = −γ

β
〈W |V 〉 (56)
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which has the only solution〈W |V 〉 = 0. This means that from now on we can constrain
ourselves without loss of generality to the caseαβ 6= γ δ†. Moreover, one can show that
all vacuum expectation values

〈W |Dr1Er2 . . . Drn |V 〉 (57)

are determined by (54) if the following inequalities are satisfied:

pkαβ − qkγ δ 6= 0 k = 0, 1, 2, . . . . (58)

The proof uses the construction of [15] and one can show that if (58) is satisfied a
representation exists even if its dimension is not the one of the smallest representation.
In order to obtainPL it is now necessary to find matricesD andE together with vectors
〈W | and |V 〉 obeying (54).

For later use we note that physical quantities like the currentJ , density profile〈τj 〉 and
two-point function〈τj τk〉 can be evaluated in the following way [12]:

J = 〈W |CL−1|V 〉
〈W |CL|V 〉

〈τj 〉 = 〈W |Cj−1DCL−j |V 〉
〈W |CL|V 〉 (59)

〈τj τk〉 = 〈W |Cj−1DCk−j−1DCL−k|V 〉
〈W |CL|V 〉

whereC = D + E.
It is possible to determine certain matrix elements of representations of the six-

parametric algebra (54) directly. This was done by Sandow [15] who then was able to
determine both the currentJ (the computation of which involves only the matrixC) in the
infinite volume limitL → ∞ and, remarkably, the phase diagram of the system. In order to
compute the density profile and the two-point function a much more detailed understanding
of the representations is needed. In order to study representation theory of (54) we introduce
two operatorsA andB, which act trivially on〈W | and |V 〉, respectively,

A = βD − δE − 1 B = αE − γD − 1

〈W |B = 0 = A|V 〉 .
(60)

If A andB are known, one can getD andE sinceαβ 6= γ δ. A andB are seen to obey
the quadratic algebra (2) discussed in section 2 with

x1 = (p − q)αγ x2 = pαβ − qγ δ x3 = pγ δ − qαβ x4 = (p − q)βδ

x5 = (α + γ )(αβ − γ δ) − (p − q)[γ (α + δ) + α(β + γ )]

x6 = (β + δ)(αβ − γ δ) − (p − q)[β(α + δ) + δ(β + γ )]

x7 = (α + β + γ + δ)(αβ − γ δ) − (p − q)(α + δ)(β + γ ) .

(61)

Note that the seven parametersxi are not independent, since they depend only on six
variablesp, q, α, β, γ, δ. Conversely the algebra (2) can be brought to the form (54) if

(x2 + x3)
2 − 4x1x4 6= 0 . (62)

One can easily verify that the inequalities (62) and (4) correspond to those of (58) for
k = 0, 1, 2, 3.

† Actually there is one exception: ifp = q and αβ = γ δ there exists a trivial one-dimensional representation
(D andE are numbers) withx0 = 0, D = (δ/β)E.
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We now observe that in the caseq = 0 of completely asymmetric diffusion we have
λ = −ηξ and the matrices̃A and B̃ (which we recall were defined as̃A = (x5/x7)A and
B̃ = (x6/x7)B) have the simple forms given by (27). The origin of this simplification can be
traced back to the representation theory of quantum groups which also simplifies drastically
in the crystal basisq = 0 [20]. Another case for whichA and B have a simple form is
p = q (symmetric diffusion). Here we haveξ = η = 0, λ = 1, and the representation is
given by (30). Finally, ifα = β = p − q, γ = δ = 0, we can define

a =
√

p

p − q
A a† =

√
p

p − q
B (63)

and the algebra (2) is rewritten as aQ-oscillator algebra [21–23]

aa† − Qa†a = 1 (64)

whereQ = q/p. The vectors|V 〉 and 〈W | turn into usual Fock vacua〈0| and |0〉 defined
by a|0〉 = 〈0|a† = 0. Some observations about this case can be found in appendix C.

As noticed before in section 3, in the absence of boundary terms the Hamiltonian (47) is
Uq(SU(2)) invariant. The ground state of this Hamiltonian isL+1 times degenerate (recall
that L is the length of the lattice) corresponding to a(L + 1)-dimensional representation
of the algebra. We demonstrate in appendix D that this representation can also be found
through theDEHP ansatz.

5. Further applications of the DEHP ansatz

It is an interesting question, to what extent the ansatz (50) can be used to describe more
general reaction–diffusion models of the type (35). Inserting (50) into the master equation
(53) for a general reaction–diffusion process definedvia (33)–(35) (note that we take all
rates constant throughout the bulk, i.e. [0k,k+1]αβ

γ δ = 0
αβ

γ δ ), we obtain the algebra

H


E2

ED

DE

D2

 =


0

x0D − x1E

−x0D + x1E

0



H =


000

01+000
10+000

11 −001
00 −010

00 −011
00

−000
01 001

00+001
10+001

11 −010
01 −011

01
−000

10 −001
10 010

00+010
01+010

11 −011
10

−000
11 −001

11 −010
11 011

00+011
01+011

10


(65)

whereas the boundary conditions (53) impose the following conditions on the vectors|V 〉
and〈W | ∑

γ1

(h1)
γ1
τ1

〈W |[γ1D + (1 − γ1)E] = −xτ1〈W |∑
γL

(hL)γL

τL
[γLD + (1 − γL)E]|V 〉 = xτL

|V 〉 .
(66)

Here h1 and hL are given by (33) and thus (66) are independent from (65). From
equations (66) it follows thatx0 = −x1, so that we can choosex0 = −1, x1 = 1 by
fixing the overall normalization in (53).

It is easily seen that only three equations of (65) are linearly independent. These can
be cast in the form

κ1DE + κ2ED = D + E (67)
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κ3D
2 = κ4DE + κ5ED (68)

κ6E
2 = κ7DE + κ8ED (69)

whereκj are given in terms of the rates0αβ

γ δ . These equations can be viewed in the following
way: equation (67) is the basic requirement as it cannot be eliminated by adjusting the
rates, whereas (68) and (69) are additional relations in the algebra which are absent in the
simplest case whereκ3 . . . κ8 are chosen to be zero (by adjusting the rates). This simplest
case corresponds to partially asymmetric diffusion and will be studied in detail in what
follows. The important point is that the set of representations of (67)–(69) is a subset of
all representations of (67) for arbitraryκ1 and κ2. This means that in all cases physical
quantities can be determined by using a representation of (67) only, and then impose the
further relations on the matrix elements ofD andE entering the computation. The existence
of solutions of the complete system (66), (67)–(69) is established for the simple case of one-
dimensional representations in appendix E. The question of existence of a two-dimensional
representation is still open.

6. Asymmetric diffusion: known results

Before we turn to the derivation of our results for current, density profile and correlation
functions of the partially asymmetric exclusion model we give a short review of some
important previously known exact results. So far exact results have mainly been derived
for the case of completely asymmetric diffusion with injection of particles at one boundary
and extraction at the other. In our notation this corresponds to the choice 0= q = γ = δ,
p = 1. This corresponds to the infinite-dimensional representation given by (29) with
0 = λ = η = ξ . The phase diagram for this case is of the form given in figure 1 [11–13].
Note that in order to make the connection to the partially asymmetric case easier we have
plotted the phases as functions ofκ+(α) = −1 + 1/α andκ+(β) = −1 + 1/β instead ofα
andβ. There are three main phases: a high-density phase A, a low-density phase B, and a
maximal-current phase C. Phases A and B are further subdivided into AI, AII and BI, BII ,
respectively [13] (see below; note that we have changed notations by switching A and B
as compared to [13] in order to comply with the notation of [15]). Phases A and B are
separated by a line which is called the ‘coexistence line’.

The currents in the three phases are given by (L � 1)

phase A: J = β(1 − β)

phase B: J = α(1 − α)

phase C: J = 1
4 . (70)

The density profile in the centre of the chain (j ∼ L/2, L � 1) is of the form

phase A (high density): 〈τj 〉 = κ+(β)

1 + κ+(β)

phase B (low density): 〈τj 〉 = 1

1 + κ+(α)

coexistence line: 〈τj 〉 = α + (1 − 2α)

(
j

L

)
phase C: 〈τj 〉 = 1

2 .

(71)

The subdivision of phase A into AI and AII (and similarly B into BI and BII ) was proposed
in [13] and is based on an analysis of the behaviour of the density profile near the ends of
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Figure 1. Phase diagram of the completely asymmetric exclusion model.

the chain, which forL � j � 1 is of the form [12]

phase AI: 〈τj 〉 = κ+(β)

1 + κ+(β)
− (1 − 2α)

[
κ+(β)

κ+(α)

(
1 + κ+(α)

1 + κ+(β)

)2
]j

phase AII : 〈τj 〉 = κ+(β)

1 + κ+(β)
− 4j−1[β(1 − β)]j√

πj3/2

(
1

(1 − 2α)2
− 1

(1 − 2β)2

)

phase BI: 〈τL−j 〉 = 1

1 + κ+(α)
+ (1 − 2β)

[
κ+(α)

κ+(β)

(
1 + κ+(β)

1 + κ+(α)

)2
]j+1

(72)

phase BII : 〈τL−j 〉 = 1

1 + κ+(α)
+ 4j [α(1 − α)]j+1

√
πj3/2

(
1

(1 − 2β)2
− 1

(1 − 2α)2

)
phase C: 〈τL−j 〉 = 1

2
− (1 − δβ,1/2)

1

2
√

π j1/2
.

Note that if β = 1
2 in phase C there are noj -dependent correction terms in the density.

The mixed notation in terms ofκ+(α), κ+(β) andα, β has been chosen deliberately and is
based on universal behaviour in the partially asymmetric case (see below).

Correlation functions for the completely asymmetric case (0= q = γ = δ, p = 1)
andα = 1 = β were obtained in [14]. This corresponds to the point 0= κ+(α) = κ+(β)

in the phase diagram (this is theQ-oscillator representation (63) withQ = 0). In the
thermodynamic limitL → ∞, k1 � 1, k2 � 1, kj fixed, the connected two-point function
was found to exhibit an algebraic decay

〈τk1τk1〉 − 〈τk1〉〈τk2〉 = − 1

4(k1k2)1/2

[
1 −

(
1 − k2

k1

)1/2
]

. (73)

Finally, in [19] the density profile in the pointp = q (α, β, γ, δ arbitrary) was computed.
This again corresponds to a simple representation of the algebra (see equation (30)).

Much less is known about the partially asymmetric diffusion process. The currentJ in
the large-L limit was determined in [15]. In analogy with the case of completely asymmetric
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Figure 2. Phase diagram for the current on a large lattice forp > q. The regions above the
dotted line in phases A and B are accessible by finite-dimensional representations (see below).

diffusion discussed above, a phase diagram with only three different phases was proposed
on the basis of the form of the current. The relevant variables for determining the phases
areκ+(α, γ ) andκ+(β, δ), where

κ+(x, y) = 1

2x
[−x + y + p − q +

√
(−x + y + p − q)2 + 4xy] . (74)

Note that for 0= y = q, p = 1 this definition reduces to the one forκ+(α) (see above). In
terms of these variables the current phase diagram exhibits the following three phases [15]

Phase A. κ+(β, δ) > κ+(α, γ ), κ+(β, δ) > 1. In the limit L → ∞ the currentJ is

J = 1

2(p − q)
{(β − δ)(p − q) − (β + δ)2 + (β + δ)

√
(β − δ − p + q)2 + 4βδ} . (75)

Phase B. κ+(α, γ ) > κ+(β, δ), κ+(α, γ ) > 1.

J = 1

2(p − q)
{(α − γ )(p − q) − (α + γ )2 + (α + γ )

√
(α − γ − p + q)2 + 4αγ } . (76)

Phase C. κ+(β, δ) < 1, κ+(α, γ ) < 1.

J = p − q

4
. (77)

These results (which are the same as the corresponding mean-field results derived in
appendix D) are summarized in the phase diagram shown in figure 2 [15].

We remark that in order to evaluate the current it is not necessary to first obtain a
complete representation of (54), only certain matrix elements are required [15]. As we are
interested in general correlators we now turn to a detailed study of representations of (54).

7. Finite-dimensional representations of the quadratic algebra and the phase diagram

As we have seen in the last section, the calculation of the density profile in the fully
asymmetric case was done by choosing the parameters of the problem such that one obtains
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an infinite-dimensional representation of a very simple form. We would like to carry out the
calculation of the density and the correlation functions (which up to now are only known
for α = β = p = 1, γ = δ = q = 0, which corresponds to 0= κ+(α, γ ) = κ+(β, δ)) in a
large region of the parameter space. In order to do so, we will use the finite-dimensional
representations of the algebra. What kind of results can one expect? An inspection of (59)
suggests that if one writesC = exp(−H), H plays the role of a space-evolution operator
although |V 〉 and 〈W | are not eigenvectors ofH. Two scenarios are possible. IfC is
diagonalizable, one expects an exponential decay of the density and correlation functions.
If C is not diagonalizable one can anticipate an algebraic behaviour. From the mean-field
analysis one expects an algebraic behaviour on the coexistence line and in the domain
κ+(α, γ ) 6 1 and κ+(β, δ) 6 1. As we will see, the finite-dimensional representations
will only access the coexistence line. Using finite-dimensional representations makes the
calculation of the correlation functions relatively simple. However, there is a price to pay,
namely one has to solve the constraint equation which has a rather complicated expression
in terms of the parametersα, β, γ, δ, p, q.

Let us first investigate the question which regions in the phase diagram given in figure 2
are accessible by finite dimensional representations.

(i) One-dimensional representation.It exists whenever the constraintx7 = 0 is fulfilled. In
terms of the variablesκ+ the constraint reads

κ+(β, δ) = 1

κ+(α, γ )
. (78)

It is completely straightforward to evaluate the current and the density profile in this case.
We find

J = αβ − γ δ

α + β + γ + δ

〈τj 〉 = α + δ

α + β + γ + δ
≡ 1

1 + κ+(α, γ )
= κ+(β, δ)

1 + κ+(β, δ)
.

(79)

The second to last equality is established after some cumbersome computations using the
constraintx7 = 0.

(ii) Two-dimensional representation.Let us consider the2D representation in detail. The
constraintf2 = 0 is expressed in terms of thexi ’s as

(x2 − x3)[x7(x
2
2 − x1x4)

2 + x2(x2x5 − x1x6)(x2x6 − x4x5)] = 0 . (80)

Takingx2 6= x3 (x2 = x3 corresponds to the unphysical situationp = −q) we can cast (80)
in the form of a quadratic equation forγ

0 = cγ 2 + bγ + a

a = βp2(α2(βp + δq + pq) + αq(βp − δp − p2 + 2δq + pq) − δq2(p − q))

b = pq(αβp(β − δ − p + 2q) + αδq(β − δ − 2p + q) − βδq(2p − q) (81)

−αpq(p − q) − δq2(δ + p − q))

c = −δq2(pβ + qδ + pq)

which allows us to readily expressγ as a function of the other five parameters. Note
however that the solutions of (81) still have to be supplemented by the conditionγ > 0,
which excludes one of the two roots of (81). The remaining one yields

γ = γ1 + γ2 + γ3

γ4
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γ1 = −p(−αβ2p + αβδp + αβp2 − αβδq + αδ2q − 2αβpq + 2αδpq)

γ2 = −p(2βδpq + αp2q − αδq2 − βδq2 + δ2q2 − αpq2 + δpq2 − δq3) (82)

γ3=p(αβp + αδq + αpq + δq2)
√

β2 + 2βδ + δ2−2βp + 2δp + p2 + 2q(β−δ−p) + q2

γ4 = 2δq(βp + δq + pq) .

For the special caseγ = δ = 0 (80) has the simple solutionβ = −q + pq/(α + q).
Using equations (74) and (81) one can show that the region of the phase diagram

accessible by the2D representation is (without loss of generality we assumep > q)

κ+(β, δ) >
1

κ+(α, γ )
. (83)

This can be easily checked for the caseγ = δ = 0, for the general case we carried
out a numerical analysis. The region described by (83) covers the area above the dotted
line in figure 2, i.e. most of the phases A and B. We note that for the case of symmetric
diffusion p = q the two-dimensional representation does not exist. The infinite-dimensional
representation is given by (30).

(iii) Three-dimensional representation.An analogous analysis of the constraintf3 = 0 for
the three-dimensional representation leads to the same constraint (83). We believe this to
hold for any finite-dimensional representation as well.

8. Matrix elements of the two-dimensional representation

Using equations (5), (9), (10) and (14) and performing a similarity transformation with

S =
(

1 0
0

√
x6/x5

)
(84)

we obtain the following form for the matricesA andB

A =
(

0 f1

0 a2

)
B =

(
0 0
f1 b2

)
|V 〉 =

(
1
0

)
〈W | = ( 1 0) (85)

where

f 2
1 = x7

x2
b2 = x2x5 − x1x6

x2
2 − x1x4

a2 = x2x6 − x4x5

x2
2 − x1x4

. (86)

Using the constraintf2 = 0, a2 andb2 can be rewritten as, for example,

a2 = (αβ − γ δ)(pβ + qδ) − (p − q)[pβ(α + δ) + qδ(β + γ )]

p2αβ − q2γ δ

b2 = (αβ − γ δ)(pα + qγ ) − (p − q)[pα(β + γ ) + qγ (α + δ)]

p2αβ − q2γ δ
.

(87)

For actual computations, properties of the matrix

C = D + E = α + β + γ + δ

αβ − γ δ
+ α + γ

αβ − γ δ
A + β + δ

αβ − γ δ
B (88)

are of central importance. We have to distinguish between two cases: ifα 6= β or γ 6= δ,
C can be diagonalized,

SCS−1 =
(

λ+0
0 λ−

)
S = 1

αβ − γ δ

(
(β + δ)f1 (α + γ )a2

(β + δ)f1 (β + δ)b2

)
λ+ = α + β + γ + δ

αβ − γ δ
+ α + γ

αβ − γ δ
a2 (89)
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λ− = α + β + γ + δ

αβ − γ δ
+ β + δ

αβ − γ δ
b2 .

Note that the determinant detS = (β + δ)f1(λ− − −λ+) is different from zero unless
λ− ≡ λ+ (the prefactor vanishes only ifx7 = 0, in which case the2D representation breaks
up into 1D representations). In the caseλ+ = λ−, C can no longer be diagonalized but only
be brought to Jordan normal form. The conditionλ+ = λ− can be rewritten as

0 = (α + γ )a2 − (β + δ)b2

αβ − γ δ
= p − q

p2αβ − q2γ δ
[βγ − αδ − p(α − β) − q(δ − γ )] . (90)

As the2D representation does not exist forp = q we conclude that the only case in which
λ+ = λ− is if

γ = αδ + p(α − β) + qδ

β + q
. (91)

A numerical analysis of the two conditions (83) and (91) yields that a necessary condition
for λ+ = λ− is thatα = β andγ = δ, i.e. the coexistence line of figure 2.

9. Correlation functions off the coexistence line (λ+ 6= λ−)

The density profile〈τj 〉 is readily evaluated using (59), (88) and (89)

〈τj 〉 = 〈W |Cj−1DCL−j |V 〉
〈W |CL|V 〉 = 〈W |S−1SCj−1S−1SDS−1SCL−j S−1S|V 〉

〈W |S−1SCLS−1S|V 〉

=
〈W̃ |

(
λ

j−1
+ 0
0 λ

j−1
−

)
D̃

(
λ

L−j
+ 0
0 λ

L−j
−

)
|Ṽ 〉

〈W̃ |
(

λL
+ 0
0 λL

−

)
|Ṽ 〉

(92)

where

|Ṽ 〉 = (β + δ)f1

αβ − γ δ

(
1
1

)
〈W̃ | = (αβ − γ δ)

f1(β + δ)[(α + γ )a2 − (β + δ)b2]
( −(β + δ)b2 (α + γ )a2 )

and

D̃ = SDS−1 =
( α + δ + αa2

αβ − γ δ
−a2

(β + δ)

0 α + δ + δb2
αβ − γ δ

)
. (93)

Note that one of the matrix elements ofD̃ vanishes. This will have consequences for the
shape of the density profile and the two-point function.

The scalar products are easy to work out and lead to the following result for the density
profile

〈τj 〉 = �

(
ω0 + ω1 exp

(
L − j

ζ

)
+ ω2 exp

(
L − 1

ζ

))
(94)

where

� = 1

[α + β + γ + δ + (α + γ )a2][(β + δ)b2 − (α + γ )a2 exp(L/ζ )]
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1

ζ
= ln

(
λ−
λ+

)
= ln

(
α + β + γ + δ + (β + δ)b2

α + β + γ + δ + (α + γ )a2

)
ω0 = (β + δ)b2(α + δ + αa2) (95)

ω1 = −a2b2 (αβ − γ δ)

ω2 = −(α + γ )a2(α + δ + δb2) .

Two cases have to be distinguished:

• ζ < 0, which corresponds to the caseκ+(α, γ ) > κ+(β, δ), i.e. phase B. In this case
the profile forL � ζ is of the form

〈τj 〉 = m< + c< exp

(
j − L

|ζ |
)

+ O
(

exp

(
− L

|ζ |
))

(96)

where

m< = α + δ + αa2

α + β + γ + δ + (α + γ )a2

c< = −a2(αβ − γ δ)

[α + β + γ + δ + (α + γ )a2](β + δ)
> 0 .

(97)

The average density starts at the valuem< at the left boundary, remains constant
throughout the bulk, and eventually exhibits an exponential increase to the valuem<+c<

at the right boundary.
• ζ > 0, which corresponds to the caseκ+(α, γ ) < κ+(β, δ), i.e. phase A. In this case

the profile forL � ζ is of the form

〈τj 〉 = m> + c> exp

(
−j − 1

|ζ |
)

+ O
(

exp

(
−L − 1

|ζ |
))

(98)

where

m> = α + δ + δb2

α + β + γ + δ + (β + δ)b2

c> = b2(αβ − γ δ)

[α + β + γ + δ + (β + δ)b2](α + γ )
< 0 .

(99)

Here the density starts at the valuem> + c> exp(−1/ζ ) at the left boundary, increases
exponentially tom> and remains constant until the right boundary.

Let us now take a closer look at the expressions for the bulk densitiesm< and m>

and the correlation length|ζ |. It turns out that they are ‘universal’ in the sense that they
depend only on the two variablesκ+(α, γ ) andκ+(β, δ) instead of on all five independent
parametersα, β, δ, p, q. We start withm< andm>. One can show that

m< = 1

1 + κ+(α, γ )
m> = κ+(β, δ)

1 + κ+(β, δ)
. (100)

The equality of (100) with (97) and (99) is established analytically only for 0= γ = δ, and
numerically to machine accuracy for the general case. As we will now argue, we believe
(100) to hold not only for the2D representation but in general for phases A and B: in
appendix F a mean-field analysis of the partially asymmetric diffusion process is carried
out, andm< andm> in phases B and A are determined. We denote the corresponding results
(see appendix D) bym<,MF and m>,MF. It is straightforward to demonstrate analytically
that

m<,MF = 1

1 + κ+(α, γ )
m>,MF = κ+(β, δ)

1 + κ+(β, δ)
. (101)
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This shows that the mean-field theory result is universal in phases A and B, and in addition
is exact whenever the2D representation exists. Based on this observation and the results of
[12] for 0 = γ = δ = q (see equation (73)) we conjecture that (100) holds true throughout
phases A and B.

Figure 3. Plot of the bulk densitiesm>, m< in phases A and B in the region accessible by the
2D representation.

The value ofm> amdm< as a function ofκ+(α, γ ) andκ+(β, δ) is shown in figure 3.
Accordingly phase A is identified as ahigh-density phasewith m> > 1

2, and phase B as a
low-density phasewith m< < 1

2.
Unlike the quantitiesm> andm< the coefficientsc< andc> of the exponentials arenot

universal in the sense that they are not only functions ofκ+(α, γ ) andκ+(β, δ). However,
the correlation length|ζ | in the exponential can be expressed as

exp

(
1

ζ

)
= κ+(α, γ )

κ+(β, δ)

(
1 + κ+(β, δ)

1 + κ+(α, γ )

)2

. (102)

This shows that the correlation length|ζ | diverges whenκ+(α, γ ) and κ+(β, δ) approach
the coexistence line:ζ → ∞ when approaching the coexistence line from phase A,
and ζ → −∞ from phase B. It is interesting to compare (72) with (102). Surprisingly
enough, for phases AI and BI the 0 = γ = δ = q correlation length has precisely the
expression (102). This ceases to be the case for phases AII and BII . We would like to stress
that although the mean-field values (100) are exact, the correlation lengthζ given by (102)
cannot be obtained in the mean-field approximation.

The two-point function can be evaluated in a way analogous to the case of the one-point
function discussed above. After some straightforward computations we obtain

〈τj τk〉 = �′
(

ω3 + ω4 exp

(
L − k

ζ

)
+ ω5 exp

(
L − j − 1

ζ

)
+ ω6 exp

(
L − 2

ζ

))
(103)

where

�′ = 1

λ2+[(β + δ)b2 − (α + γ )a2 exp(L/ζ )]
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ω3 = (β + δ)b2

(
α + δ + αa2

αβ − γ δ

)2

ω4 = −a2b2
α + δ + αa2

αβ − γ δ
(104)

ω5 = −a2b2
α + δ + δb2

αβ − γ δ

ω6 = −(α + γ )a2

(
α + δ + δb2

αβ − γ δ

)2

.

Again we have to distinguish between two cases.

• ζ < 0 (low-density phase). The connected two-point function in the large-L limit is
given by

〈τj τk〉 − 〈τj 〉〈τk〉 = c<(m> − m<) exp

(
L − j

ζ

)
− c2

< exp

(
2L − j − k

ζ

)
. (105)

It is different from zero only very close to the right boundary, from where it decays
exponentially.

• ζ > 0 (high-density phase).

〈τj τk〉 − 〈τj 〉〈τk〉 = c>(m< − m>) exp

(−k + 1

ζ

)
− c2

> exp

(−j − k + 2

ζ

)
. (106)

Thus the connected two-point function in phase A is different from zero only very close
to the left boundary, where it exhibits an exponential behaviour.

10. Correlation functions on the coexistence line (λ+ = λ−)

For the caseα = β, γ = δ we haveκ+(α, γ ) = κ+(β, δ) > 1 with

κ+(α, γ ) =
√

p

q
(107)

and are thus on the phase boundary between the high-density phase A and the low-density
phase B. Here we have taken into account the constraint (81) for the2D representation,
which can be solved with the result

γ = −p + (α + q)

√
p

q
. (108)

The matrix elements of the matricesA andB in (85) are found to be

a2 = b2 = −if1 =
√

p

q
− 1 − α

√
q + √

p

q
√

p
(109)

which leads to the following form for the matrixC:

C = 1

α − γ
((2 + a2)I + a2P) P =

( −1 i
i 1

)
. (110)

The matrixP has the propertyP 2 = 0, which is important for carrying out the calculations
below. Using the fact thatP 2 = 0 it is easy to show that

Ck = (2 + a2)
k−1

(α − γ )k

(
2 + (1 − k)a2 ika2

ika2 2 + (1 + k)a2

)
(111)
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which implies that the normalization is given by

〈W |CL|V 〉 = (2 + a2)
L−1

(α − γ )L
(2 + (1 − L)a2) . (112)

Using equation (112) we can easily evaluate the current

J =
(

α − γ

2 + a2

)(
2 + (2 − L)a2

2 + (1 − L)a2

)
. (113)

In the thermodynamic limit this simplifies to

J = α − γ

2 + a2
= √

pq
1 − Q
1 + Q Q =

√
q

p
≡ 1

κ+(α, γ )
(114)

which, in turn, can be shown to be equal to (76).
The density profile is

〈τj 〉 = (α + γ )(2 + a2(2 − L)) + a2
2(γ − Lα)

(α + γ )(2 + a2)(2 + (1 − L)a2)
+ (α − γ )a2

2

(α + γ )(2 + a2)(2 + (1 − L)a2)
j .

(115)

In the thermodynamic limitj, L → ∞, j/L = x fixed, this turns into

〈τLx〉 = Q
1 + Q + 1 − Q

1 + Qx . (116)

This means that forp > q the density increases linearly fromQ/(1 + Q) at the left-hand
end of the chain to 1/(1 + Q), whereas forq > p it decreases linearly fromQ/(1 + Q) to
1/(1 + Q). Clearly the profile is symmetric under simultaneous interchange ofp andq and
left and right as it should be. The most remarkable feature of the profile (116) is the fact
that it is independent of the injection/extraction rateα. The only relevant parameter is the
ratio p/q of the diffusion rates to the right and to the left. This fact is probably a feature
of the particular representation we work with since in the completely asymmetric case the
current and density profile on the coexistence lineare dependent on the boundary condition
α (see equation (71)), and we expect that in general the current and density profile in the
partially asymmetric case will depend on the boundary conditions as well.

The two-point function can be determined by using (111) in (59) and is found to be of
the form

〈τj τk〉 = ω7 + ω8j + ω9k (117)

where

ω7 = (α + γ )2[2 + a2(3 − L) + a2
2] + 2a2

2[γ 2 − Lα(α + γ )] + a3
2[γ 2 − Lα2]

(2 + a2)2(2 + a2(1 − L))(α + γ )2

ω8 = (α − γ )a2
2(α + γ + γ a2)

(2 + a2)2(2 + a2(1 − L))(α + γ )2
(118)

ω9 = (α − γ )a2
2(α + γ + αa2)

(2 + a2)2(2 + a2(1 − L))(α + γ )2
.

In the limit j, k, L → ∞ with j/L = x andk/L = y fixed this simplifies essentially

〈τLxτLy〉 =
( Q

1 + Q
)2

+ 1 − Q(
1 + Q

)2 x + Q(1 − Q)(
1 + Q

)2 y . (119)
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Using equation (116) we finally arrive at the following result for the connected two-point
function:

〈τLxτLy〉 − 〈τLx〉〈τLy〉 =
(

1 − Q
1 + Q

)2

x(1 − y) . (120)

Like the density profile the connected two-point function is independent ofα. It takes its
maximal value((1 − Q)/2(1 + Q))2 in the middle of the chain, and decreases to zero at
both boundaries. It is interesting to note that a similar expression for the connected two-
point function was obtained for the completely asymmetric (particles hop only to the right)
deterministicexclusion model with stochastic boundary effects [24].

11. Summary and conclusion

In this paper we have first presented the Fock representations of the quadratic algebra.
The representations can be either infinite-dimensional or finite-dimensional. Each finite-
dimensional representation is characterized by a constraint on the seven parameters of
the algebra. The matrix elements of the two generators of the algebra are given by
recurrence relations. Only in the cases where these relations can be solved in a simple
way is the corresponding Fock representation useful for studying the physical problem of
partially asymmetric diffusion with open boundaries. Quadratic algebras with more than two
generators, which are relevant for many-state problems, will be presented elsewhere. The
structure of the associative algebra is different for these cases [28]. The boundary conditions
define representations of a different type as compared to the Fock representations considered
here.

The quadratic algebra appears in theDEHP ansatz for the steady-state probability
distributions of one-dimensional reaction–diffusion problems with two-body rates and
injection and extraction of particles at the ends of the chain. As shown in section 5 and
also in [3, 25], the quadratic algebra appears also for some more general reaction–diffusion
processes. As also shown in the present work, if one considers three-body rates, cubic
algebras occur. We have not studied the representation theory for that case.

We have used the2D representation of the quadratic algebra to compute the density
profile and correlation functions. Both have a special dependence on the coordinates (see
equations (106) and (105)). The parameter dependence is also peculiar. Certain quantities,
like the density around the middle of the chain or the correlation length, depend on the
parametersα, β, γ, δ, p, q only through two functionsκ+(α, γ ) andκ+(β, δ) defined in the
text. Our results and those of [11–13] suggest that the density in the bulk is given by
the mean-field prediction in the thermodynamic limit. Again from our results and those
of [11–13] it looks like the correlation lengths again are ‘universal’ (they depend only on
κ+(α, γ ) andκ+(β, δ)) in regions AI and BI of the phase diagram.

By means of (50) our results (105), (106) and (120) for the connected two-point
functions can be directly translated into theXXZ quantum-spin chain (47) with non-diagonal
boundary terms. This yields new and nontrivial results for correlators in theXXZ chain with
boundaries. We have not considered the problem of time-dependent correlation functions.
Some recent numerical results of Bilstein [26] can give a hint in this direction. He studied
the finite-size scaling behaviour of the energy gaps of the quantum Hamiltonian. It turns
out that in the low- and high-density phases the system is massive. In phase C (see figure 2)
the system is massless. Both real and imaginary parts of the energy gaps vanish likeL−3/2,
whereL is the size of the system. The coexistence line is also massless but features a less
simple length dependence.
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Finally, as a by-product of our work on theDEHP construction, we have given a simple
way to construct irreducible representations of theUq(SU(2)) quantum group.
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Appendix A

We would like to show that in the Fock representation of the quadratic algebra (2) the
matricesA and B can be written in tridiagonal form. This is a property of the Fock
representation only, and is independent of the parametersxi . Instead of presenting the
general proof, we give two examples which will help the reader to see the mechanism behind
the proof. We start with the2D representation. We choose|V 〉 = (

1
0

)
and take〈W | = w1, w2

with w1 6= 0 such that〈W |V 〉 6= 0. We then perform a similarity transformation

S =
(

1 α

0 1

)
S|V 〉 = |V 〉 〈W |S−1 = ( w1, −αw1 + w2 ) (A1)

where we chooseα = w2/w1 andw1 = 1, which results in〈W | = 1, 0 and〈W |V 〉 = 1.
In this basisA andB now must be of the form

A =
(

0 a12

0 a22

)
B =

(
0 0

b21 b22

)
. (A2)

We now perform another similarity transformation

S =
(

1 0
0 β

)
〈W |S−1 = 〈W | S|V 〉 = |V 〉 (A3)

where we chooseβ2 = a12/b21 and find two equivalent representations

A =
(

0 ±√
a12b21

0 a22

)
B =

(
0 0

±√
a12b21 b22

)
. (A4)

Here we have assumed that botha12 andb21 are different from zero. One can show that if
a12 = 0 or b21 = 0 the algebra (2) yields the conditionx7 = 0, which corresponds to the
1D representation and thus the2D representation is not interesting. Renaming the entries of
A andB we arrive at

A =
(

0 f1

0 a2

)
B =

(
0 0
f1 b2

)
. (A5)

Let us now consider the3D representation. We can repeat the similarity transformations
from the2D case to bringA andB to the form (f ′

1 6= 0)

A =
( 0 f ′

1 g′
1

0 a′
22 a′

23
0 a′

32 a′
33

)
B =

( 0 0 0
f ′

1 b′
22 b′

23
g′

1 b′
32 b′

33

)
(A6)

where|V 〉 =
(

1
0
0

)
and〈W | = (1, 0, 0). Taking the further similarity transformation

S =
( 1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

)
tan(θ) = g′

1

f ′
1

(A7)
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we get

A =
( 0 f1 0

0 a22 a23

0 a32 a33

)
B =

( 0 0 0
f1 b22 b23

0 b32 b33

)
. (A8)

Finally, by means of a diagonal similarity transformation we can bringA andB to the form

A =
( 0 f1 0

0 a2 f2

0 h2 a3

)
B =

( 0 0 0
f1 b2 k2

0 f2 b3

)
. (A9)

This procedure can be generalized to any dimension of the representation. We can thus
search for representations of the quadratic algebra starting with the tridiagonal form

Ã =


0 f1 0 0 0 0 0. . .
0 a2 f2 0 0 0 0. . .

0 h2 a3 f3 0 0 0. . .

0 0 h3 a4 f4 0 0. . .

. . . . . .

 (A10)

B̃ =


0 0 0 0 0 0 0. . .
f1 b2 k2 0 0 0 0. . .

0 f2 b3 k3 0 0 0. . .

0 0 f3 b4 k4 0 0. . .

. . . . . .

 . (A11)

Appendix B

In this appendix we discuss a generalization of theDEHP formalism to chemical processes
of the types given in (35) that incorporatethree neighbouring sites. By construction all
models discussed above are contained in the present formulation. From a physical point
of view this generalization is quite interesting. For purely diffusive processes it allows us,
for example, to let particles hop to the next-nearest neighbour site if the nearest neighbour
site is unoccupied. In the corresponding traffic-flow picture this corresponds to letting cars
move faster or slower depending on whether the road ahead is free for a long or a short
distance.

We consider a master equation of the form

0 = ∂P

∂t
= −

L−2∑
k=1

∑
γk,γk+1,γk+2

(
Hk,k+1,k+2

)γk,γk+1,γk+2

τk,τk+1,τk+2
PL(τ1, τ2 . . . τk−1, γk, γk+1, γk+2, τk+3 . . . τL)

−
∑
γ1γ2

(h12)
γ1γ2
τ1τ2

PL(γ1γ2τ3 . . . τL) −
∑

γL−1γL

(hL−1L)γL−1γL

τL−1τL
PL(τ1 . . . τL−2γL−1γL)

(B1)

where

(
Hk,k+1,k+2

)γk,γk+1,γk+2

τk,τk+1,τk+2
=


∑′

βk,βk+1,βk+2

0
γk,γk+1,γk+2
βk,βk+1,βk+2

γj = τj j = k, k + 1, k + 2

−0γk,γk+1,γk+2
τk,τk+1,τk+2

else .
(B2)

Here 0
αβγ

α′β ′γ ′ is the probability per unit time that the configuration(αβγ ) on three
neighbouring sites changes to the configuration(α′β ′γ ′). Following the analysis in section 1
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above we demand for the probability distribution in the bulk that

−
∑

γk,γk+1,γk+2

(
Hk,k+1,k+2

)γk,γk+1,γk+2

τk,τk+1,τk+2
PL(τ1, τ2 . . . τk−1, γk, γk+1, γk+2, τk+3 . . . τL)

= xτk
PL−1(τ1 . . . τk−1τk+1 . . . τL) − xτk+1PL−1(τ1 . . . τkτk+2 . . . τL)

+yτk
PL−1(τ1 . . . τk−1τk+1 . . . τL) − yτk+2PL−1(τ1 . . . τk+1τk+3 . . . τL)

+zτk+1PL−1(τ1 . . . τkτk+2 . . . τL) − zτk+2PL−1(τ1 . . . τk+1τk+3 . . . τL)

+tτkτk+1PL−2(τ1 . . . τk−1τk+2 . . . τL) − tτk+1τk+2PL−2(τ1 . . . τkτk+3 . . . τL) . (B3)

This ensures that there will be no contribution from the bulk to the right-hand side of (B1),
as all terms will cancel when summed over(k, k + 1, k + 2). As compared to (53) it is now
possible to include terms containing probability distributionsPL−2 with two fewer particles.
The right-hand side of (B3) can be simplified by introducing the notation

µbk
= xbk

+ ybk
νbk

= zbk
− xbk

λbk
= −µbk

− νbk
. (B4)

From the boundaries we get the conditions that∑
γ1γ2

(h12)
γ1γ2
τ1τ2

PL(γ1γ2τ3 . . . τL) = tτ1τ2PL−2(τ3 . . . τL)

+µτ1PL−1(τ2 . . . τL) − λτ2PL−1(τ1τ3 . . . τL)
(B5)∑

γL−1γL

(hL−1L)γL−1γL

τL−1τL
PL(τ1 . . . τL−2γL−1γL) = −tτL−1τL

PL−2(τ1 . . . τL−2)

−µτL−1PL−1(τ1 . . . τL−2τL) + λτL
PL−1(τ1 . . . τL−1) .

Here we have allowed for arbitrary processes of the type introduced in (35) to occur on
the first two and last two sites of the lattice. Putting everything together we arrive at the
following algebra:

−H



D3

D2E

DED

ED2

DE2

EDE

E2D

E3


=



0
µ1DE + ν1DE + λ0D

2 + t11E − t10D

µ1ED + ν0D
2 + λ1DE + t10D − t01D

µ0D
2 + ν1ED + λ1ED + t01D − t11E

µ1E
2 + ν0DE + λ0DE + t10E − t00D

µ0DE + ν1E
2 + λ0ED + t01E − t10E

µ0ED + ν0ED + λ1E
2 + t00D − t01E

0


(B6)

where

H =



H 111
111 0110

111 0101
111 0011

111 0100
111 0010

111 0001
111 0000

111

0111
110 H 110

110 0101
110 0011

110 0100
110 0010

110 0001
110 0000

110

0111
101 0110

101 H 101
101 0011

101 0100
101 0010

101 0001
101 0000

101

0111
011 0110

011 0101
011 H 011

011 0100
011 0010

011 0001
011 0000

011

0111
100 0110

100 0101
100 0011

100 H 100
100 0010

100 0001
100 0000

100

0111
010 0110

010 0101
010 0011

010 0100
010 H 010

010 0001
010 0000

010

0111
001 0110

001 0101
001 0011

001 0100
001 0010

001 H 001
001 0000

001

0111
000 0110

000 0101
000 0011

000 0100
000 0010

000 0001
000 H 000

000


. (B7)
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It is clear that only seven of the eight equations in (B7) are independent. The boundary
conditions are rewritten as∑
γ1γ2

(h12)
γ1γ2
τ1τ2

〈W |[γ1D + (1 − γ1)E][γ2D + (1 − γ2)E]

= 〈W |[(tτ1τ2 + µτ1[τ2D + (1 − τ2)E] − λτ2[τ1D + (1 − τ1)E]
]∑

γL−1γL

(hL−1L)γL−1γL

τL−1τL
[γL−1D + (1 − γL−1)E][γLD + (1 − γL)E]|V 〉

= [ − tτL−1τL
+ λτL

[τL−1D + (1 − τL−1)E] − µτL−1[τLD + (1 − τL)E]
]|V 〉 .

Note that the algebra (B7) is cubic and that the conditions at the boundaries are quadratic
in D andE.

If we constrain ourselves to diffusion processes only, the system (B7) decouples into
two sets of two independent equations

H1

( D2E

DED

ED2

)
=

( −λ1DE + λ0D
2 + t11E − t10D

µ1ED + ν0D
2 + λ1DE + t10D − t01D

)
(B8)

H2

( DE2

EDE

E2D

)
=

(
µ1E

2 − µ0DE + t10E − t00D

µ0DE + ν1E
2 + λ0ED + t01E − t10E

)
where

H1 =
( −0110

101 − 0110
011 0101

110 0011
110

0110
101 −0101

110 − 0101
011 0011

101

)
(B9)

H2 =
( −0100

010 − 0100
001 0010

100 0001
100

0100
010 −0010

100 − 0010
001 0001

010

)
.

In order to demonstrate that there exist solutions to these equations we will prove the
existence of a one-dimensional representation for the special choice of boundary conditions

(h1)
00
11 = −α = −(h1)

00
00 (hL)11

00 = −β = −(hL)11
11 (B10)

which correspond to injection of particles at sites 1 and 2 with probabilityα if both sites
are empty, and extraction of particles at sitesL − 1 andL with probability β if both sites
are occupied. The one-dimensional representation exists ifD = E = 1 and

α = β = 0110
101 + 0110

011 − 0101
110 − 0101

110 = 0100
010 + 0100

001 − 0010
100 − 0001

100

0110
101 + 0011

101 = 0101
011 + 0101

110 0100
010 + 0001

010 = 0010
001 + 0010

100 .
(B11)

The corresponding probability distribution is trivial

PL(τ1 . . . τL) = 1

2L
(B12)

which means that all configurations are equally represented. Although the existence of the1D

representations is a nontrivial fact, the corresponding physics is not particularly interesting.
It would be very interesting to construct finite or infinite dimensional representations and
use them to compute currents, density profiles, etc.
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Appendix C

In this appendix we consider the special case 0= γ = δ and α = β = p − q of the
algebra (54). As was shown in (63) the quadratic algebra reduces to aQ-oscillator algebra.
We introduce the following notation forQ-numbers

{n} = 1 − Qn

1 − Q
(C1)

andQ-binomials

Cp
n (Q) = {n}{n − 1} . . . {2}

{n − p}{n − p − 1} . . . {2}{p}{p − 1} . . . {2} =
∏n

r=1(1 − Qr)∏p

s=1(1 − Qs)
∏n−p

t=1 (1 − Qt)
.

(C2)

In order to compute the current or correlation functions a convenient representation of
CN = (D + E)N is required. In terms ofa anda† we find

CN = 1

pN

(
2

1 − Q
+ a + a†

√
1 − Q

)N

=
(

2

p − q

)N N∑
j=0

Cj

N (1)(a + a†)j
(√

1 − Q

2

)j

. (C3)

In order to evaluate, for example, the normalization〈0|CL|0〉 it is convenient to decompose
powers ofa + a† into normal-ordered expressions defined via

: (a + a†)n :=
n∑

p=0

Cp
n (Q)a†p

an−p . (C4)

The decomposition is of the form

(a + a†)n =
[n/2]∑
m=0

M(m)
n : (a + a†)n−2m : . (C5)

Using the identity

(a + a†) : (a + a†)n :=: (a + a†)n+1 : +{n} : (a + a†)n−1 : (C6)

one readily obtains recursive expressions forM(k)
n

M(0)
n = 1 M(1)

n =
n−1∑
l=1

{l} M(2)
n =

n−3∑
l=1

{l}M(1)

l+2 M(3)
n =

n−5∑
l=1

{l}M(2)

l+4 . . . . (C7)

We first note the result for the casesQ = 1 (no deformation) andQ = 0

M(m)
n

∣∣
Q=1 =

(
n

2m

) m−1∏
k=0

(2k + 1) = n!

(n − 2m)! (2m)!!

M(m)
n

∣∣
Q=0 =

(
n − 1

m

)
−

(
n − 1
m − 2

)
.

(C8)

After some tedious computations we find for arbitraryQ

M(1)
n = n − {n}

1 − Q

M(2)
n = 1

(1 − Q)2

[
n

(
n − 1

2
− {n − 2}

)
− {n}

( {n − 3}
{2} − {n − 3}

)]
.

(C9)

We did not succeed in obtaining a closed form forM(k)
n for generalk. The difficulty can be

traced back to the recurrence relation (C7) which although it is written entirely in terms of
Q-numbers does not haveQ-number solutions (the sum ofQ-numbers is not aQ-number).
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Appendix D

In this appendix we would like to show that theDEHP ansatz gives a new way to construct
irreducible representations of the quantum groupUq(SU(2)) and that the quantum plane
appears in a natural way. We consider the special case 0= ξ = η, λ = q/p, z2 = p/(p − q)

of (54). The boundary conditions are taken such that 0= γ = δ, then the limitα → 0,
β → 0 is performed. For 0= α = β = γ = δ the XXZ quantum spin Hamiltonian (47)
corresponding to the diffusion process is invariant under the quantum algebraUq(SU(2))

([17, 6] and references therein). The stationary state (50) is no more unique since the ground
state of the ferromagnetic chain is(L+ 1)-times degenerate corresponding to a multiplet of
slq(2). As the boundary conditions (54) become ill-defined in the case 0= α = β = γ = δ

we carefully take the limitα → 0, β → 0 with 0 = γ = δ as follows:

α = ε

e
β = ε

d
D̄ = εD Ē = εE

〈W |Ē = e〈W | D̄|V 〉 = d|V 〉
(D1)

whereD̄ and Ē are seen to obey the quantum plane equation

D̄Ē = Q2ĒD̄ Q2 = q

p
. (D2)

The quantum-mechanical state corresponding to the stationary state of the diffusion process
is obtained by applying (38)

|0〉 = 1

N
L∑

k=0

dL−k ek
∑

i1<i2<···<ik

Q2(i1+i2+···+ik−(k+k2)/2)
k∏

l=1

σ−
il

| ↑↑ . . . ↑〉 (D3)

where 1/N is a normalization factor. Note that|0〉 is a linear combination ofL + 1
independent wavefunctions. In order to get the ground state of theXXZ chain (47) we still
have to perform the similarity transformation (46), which changes the probability distribution
of the stationary state (50) into

〈W |
L∏

i=1

(
τi3Qi−1D + (1 − τi)E

) |V 〉 = 3LQL(L−1)/2〈W |
L∏

i=1

(
τiD + (1 − τi)

3Qi−1
E

)
|V 〉 .

(D4)

This yields the following result for the similarity-transformed state|0〉U , which is the ground
state of theUq(SU(2))-invariantXXZ Hamiltonian (47)

|0〉U = 1

N 3LQL(L−1)/2
L∑

k=0

3−kdL−kek
∑

i1<i2<···<ik

Qi1+i2+···+ik−k2
k∏

l=1

σ−
il

| ↑↑ . . . ↑〉 . (D5)

We note that thekth term in the sum is proportional to the state(S−)k| ↑↑ . . .〉 obtained by
acting with the quantum-group generators

S− =
L∑

l=1

Q 1
2

∑l−1
k=1 σ z

k σ−
l Q− 1

2

∑L
m=l+1 σ z

m . (D6)

We believe that using theDEHP ansatz in order to get irreducible representations of quantum
groups may have other applications.



3404 F H L Essler and V Rittenberg

Appendix E

Here we address the problem of existence of solutions to the system of relations (33),
(66)–(69). It is convenient to define symmetric and antisymmetric combinations of rates

0±
a = 001

11 ± 010
11 0±

b = 001
00 ± 010

00 0±
c = 001

10 ± 010
01

0±
d = 011

10 ± 011
01 0±

e = 000
10 ± 000

01 1 = α + δ

β + γ
.

(E1)

Note that due to positivity of the rates all symmetric combinations are automatically positive.
With

E = β + γ

αβ − γ δ
D = α + δ

αβ − γ δ
(E2)

it is straightforward to show that1D representations exist under the condition that

0+
a + 0+

b = 0+
d 1 + 0+

e 1−1

1(011
00 + 0+

d ) = 000
111

−1 + 0+
a (E3)

0−
e 1−1 + 10−

d + 20−
c + 0−

a + 0−
b = − 2

E
(1 + 1−1) .

It is obvious that one can choose the 12 rates such that equations (E3) are satisfied.

Appendix F. Mean-field analysis

In this appendix we give a summary of the mean-field analysis for the partially asymmetric
diffusion process on a lattice withL sites. Our discussion follows [11, 27], which deals
with the completely asymmetric case. The particles hop with ratep (q) to the right (left)
and are injected (extracted) with rateα (γ ) at site 1 and rateδ (β) at siteL.

In a stationary state the density at sitej is time-independent, which implies

0 = d〈τj 〉
dt

= (q − p)〈τj−1τj 〉 + (p − q)〈τj τj+1〉 + p〈τj−1〉 + q〈τj+1〉 − (p + q)〈τj 〉 . (F1)

Denoting 〈τj 〉 by tj and decoupling the two-point functions〈τj τk〉 = tj tk leads to the
following set of mean-field equations:

ptj−1 + qtj+1 − ptj−1tj − qtj tj+1 = (p + q)tj − ptj tj+1 − qtj tj−1 j = 2 . . . L − 1 (F2)

α(1 − t1) + qt2(1 − t1) = γ t1 + pt1(1 − t2)

βtL + qtL(1 − tL−1) = δ(1 − tL) + ptL−1(1 − tL) .
(F3)

The bulk equations (F2) can be rewritten as

tj+1tj = − q

p − q
tj+1 + p

p − q
tj + c (F4)

wherec is an arbitrary constant (related to the currentJ ). The net mean-field current from
site j to sitej + 1 is defined as

J = ptj (1 − tj+1) − q(1 − tj )tj+1 = −(p − q)c (F5)

and is independent of position as it should be for a stationary state. If we define

sj = p − q

p + q

(
tj + q

p − q

)
(F6)
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the new quantitiessj are seen to obey the recursion

sj+1 = 1 − c′

sj
c′ = pq

(p + q)2
−

(
p − q

p + q

)2

c

s1 = pα + qγ + pq − (p + q)2c′

(p + q)(α + γ )
sL = pδ + qβ − pq + (p + q)2c′

(p + q)(β + δ)
.

(F7)

We note that 06 c′ as otherwises2 > 1, which is unphysical as 06 tj 6 1, ∀j (which
implies q/(p + q) 6 sj 6 p/(p + q)). As for the completely asymmetric case we now
have to distinguish three cases:

• c′ > 1
4

In this case the recursion has no fixed point andsj would eventually turn negative,
which leads to an unphysical solution. Thus we can exclude this case.

• c′ = 1
4

This case corresponds to the maximal current phaseC in the phase diagram (see
figure 2). The current is given by (see above)

J = −(p − q)c = (p + q)2

(p − q)
c′ − pq

p − q
= p − q

4
(F8)

which is the same as the exact result (77).
• c′ < 1

4
In this case the recursion (F7) has two fixed points

s± = 1
2

(
1 ± √

1 − 4c′
)

. (F9)

Writing sj = √
c′uj+1/uj we see that theuj ’s are subject to the recursion

uj+1 + uj−1 = 1√
c′ uj (F10)

which is recognized as a special case of the recursion relation for Chebyshev
polynomials. Equation (F10) is solved formally as

un(θ) = sin[(n − 1)θ + φ] θ = arccos

(
1

2
√

c′

)
(F11)

(note thatθ is complex) which leads to the following expression forsn, j = n . . . L

sn =
√

c′ sin[nθ + φ]

sin[(n − 1)θ + φ]
. (F12)

Using the two boundary conditions (F7) in (F12) completely fixes the values ofφ

and c′ as functions ofα, β, γ , δ, p and q. For simplicity we introduce the notation
s1 = d1 − d2c

′ andsL = d3 + d4c
′. The boundary condition fors1 implies that

cot(φ) = 2(2d1 − 1) cos2(θ) − d2

sin(2θ)
(F13)

whereas the one forsL yields

cot(φ) = −2 cos(θ) cos(Lθ) − (d4 + 4d3 cos2(θ)) cos[(L − 1)θ ]

2 cos(θ) sin(Lθ) − (d4 + 4d3 cos2(θ)) sin[(L − 1)θ ]
. (F14)
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Equating (F13) and (F14) we obtain

0 = d1(1 − d3) sin[(L + 3)θ ]

+[(2d1 − d2 − 1)(1 − d3) + 2d1(1 − 2d3 − d4)] sin[(L + 1)θ ]

+[(2d1 − d2 − 1)(1 − 2d3 − d4)

+(d1 − 1)(1 − d3) − d1d3] sin[(L − 1)θ ]

−[(2d1 − d2 − 1)d3 + (1 − d1)(1 − 2d3 − d4)] sin[(L − 3)θ ]

+d3(1 − d1) sin[(L − 5)θ ] . (F15)

In the large-L limit (F15) turns into a fourth-order polynomial equation inz = exp(2iθ)

(θ is complex). The polynomial equation can then be solved explicitly forθ (and thusc′)
as a function ofα, β, γ, δ, p, q.
However, there exists a much simpler way to determine the mean field current [11]: in
the low-density phase B we start out infinitesimally close to the unstable fixpoints−, i.e.
s1 = s−+ε. The density stays ats− throughout the bulk and only deviates towardss+ at
the right end of the chain. Using the fact thatc′ = s−(1− s−) in the expression (F7) for
s1, and then settings1 = s− immediately yieldss−, and thus alsoc′, as a function ofp,
q, α andγ . Inserting the resulting expression forc′ into (F8) then yields the current as
a function ofα, γ , p andq. The result found is identical to the exact expression (76).
An analogous analysis can be carried out in the high-density phase A. Again the result
is identical to the exact expression (75)

We also can use mean-field theory to determine the density profile in phases A and B.
From our discussion above it is clear that in phase B the density profile in the bulk is
essentially constant and equal to the value of the unstable fixed point (we switch back from
the sj variables totj variables)

t− = 1

2
(1 − √

1 + 4c) = 1

2

(
1 −

√
1 − 4JB

p − q

)
. (F16)

Analogously, in phaseA the profile in the bulk is constant and equal to the value at the
stable fixed pointt+

t+ = 1

2

(
1 +

√
1 − 4JA

p − q

)
. (F17)

Using the expression for the currents these values can be determined explicitly

t− =: m<,MF = 1

2
− 1

p − q

√
(p − q)2

4
− α(α + γ )κ+(α, γ ) + γ [α + γ + p − q]

t+ =: m>,MF = 1

2
+ 1

p − q

√
(p − q)2

4
− β(β + δ)κ+(β, δ) + δ[β + δ + p − q] .

(F18)

These expressions coincide with (100). Finally, we note that the mean-field result for the
correlation lengthζ does not reproduce (102) and is incorrect.
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[19] Stinchcombe R B and Scḧutz G 1995Europhys. Lett.29 663; 1995Phys. Rev. Lett.75 140
[20] Kashiwara M 1990Commun. Math. Phys.133 149
[21] Kulish P P and Damaskinsky E V 1990J. Phys. A: Math. Gen.23 L415
[22] Macfarlane A J 1989J. Phys. A: Math. Gen.22 4581
[23] Biedenharn L 1989J. Phys. A: Math. Gen.22 L873
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