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Representations of the quadratic algebra and partially
asymmetric diffusion with open boundaries

Fabian H L Essleit and Vladimir Rittenbery
Physikalisches Institut der UniveraitBonn, Nussallee 12, 53115 Bonn, Germany

Received 7 August 1995, in final form 8 March 1996

Abstract. We consider the one-dimensional partially asymmetric exclusion model with open
boundaries. The model describes a system of hard-core particles that hop stochastically in both
directions with different rates. At both boundaries particles are injected and extracted. By means
of the method of Derrid@t al the stationary probability measure can be expressed as a matrix-
product state involving two matrices forming a Fock-like representation of a general quadratic
algebra. We obtain the representations of this algebra, which were unknown in the mathematical
literature and use the two-dimensional one to derive exact expressions for the density profile and
correlation functions. Using the correspondence between the stochastic model and a quantum
spin chain, we obtain exact correlation functions for a sbiHeisenbergXXZ chain with
non-diagonal boundary terms. Generalizations to other reaction—diffusion models are discussed.

1. Introduction

One-dimensional reaction—diffusion processes have recently attracted much attention for
a variety of reasons. Pure diffusion models have been studied in relation with interface
growth [1], traffic flow [2], the dynamics of shocks [3,4] and magnetophoresis of tagged
polymers [5]. More general reaction—diffusion models are of interest from a mathematical
point of view due to their relation to integrable quantum chain Hamiltonians [6]. It is
interesting to note the important role played by the boundary conditions in these models [7],
which completely control the physics in some cases. For the case of two-state models, for
example, in the corresponding quantum chain Hamiltonians (whictXafZ models) the
boundary conditions generally break the particle nunibétr) symmetry and are not easily
treatable by the usual methods like the Bethe ansatz [8, 9]. The problem is that although the
chains can be shown to be integrable [10], the Bethe ansatz has not so far been constructed
due to the lack of a reference state.

An important step forward in these types of problems was made by Deetidd
[11] in the case of completely asymmetric diffusion with particle injection at one end of
the chain, and particle extraction at the other end of the chain. They showed that there
exists a recursion, which relates the probability distribution of the steady stafe $des
to the one forL — 1 sites. An equivalent formulation of this property was given by
Derrida, Evans, Hakim and Pasqui@efP) [12], who demonstrated that the probability
distribution can be written in a factorized form with coefficients that are caotimbers
but (infinite-dimensional) matrices. For the two-state model there are two matrices which
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form a Fock representation of the quadratic algebra. Using representations of this algebra
one can compute in principle all correlation functions. In particular, the density profile was
determined in [12, 13], and in a special case (when the injection rate is equal to the extraction
rate) even the two-point correlation function [14] was obtained. If one considers the more
general problem with particle injection and extraction at both ends, and partially asymmetric
diffusion, the DEHP approach is still applicable, but the representations of the quadratic
algebra were not known. In a remarkable paper [15], Sandow was able to compute some
important matrix elements in the enveloping algebra, which allowed him to compute the
currents and to obtain the phase diagram, which coincides with the mean-field predictions.

In the present paper we start by determining all Fock representations of the most general
guadratic algebra, which depends on seven parameters (section 2). They might be of
interest in other physical contexts as well. It turns out that the representations can be either
finite-dimensional or infinite-dimensional. For each finite-dimensional representation one
obtains a constraint equation for the seven parameters. This constraint depends on the
dimension of the representation. The matrix elements of the two matrices appearing in the
guadratic algebra are given by recursion relations. We show that for some special cases
these recursions can be easily solved.

Next we review the connection between the steady-state probability distribution and the
ground state of certain (in general non-Hermitian) quantum chains (section 3). In section 4
we give a summary of theeHp ansatz and establish the connection with the quadratic
algebra discussed in section 2. In section 5 we consider the most general master equation
for one-dimensional systems with two-body interactions (one has twelve independent rates)
and particle injection and extraction at both boundaries and applyp#he ansatz. One
gets a quadratic algebra and two additional quadratic relations on the matrices. This implies
that only finite-dimensional representations have a chance to be useful. We found that
there exists a one-dimensional representation with three conditions for the twelve rates and
the four parameters describing the injection and extraction of particles at the ends of the
chain. The question of the existence of higher-dimensional representations and their physical
relevance is left open. In appendix B we study the applicability ofttihier formalism to
the steady state of a master equation with three-body interactions. We show that in this
case one obtains, as expected, cubic algebras. Their representations and physical interest
remains to be studied.

After these mathematical investigations we turn to a detailed study of the problem of
partially asymmetric diffusion with particle injection/extraction at both boundaries. We
start with a review of the known results in section 6, using the phase diagram obtained
by Sandow [15] as a basis. In the following sections we concentrate on the application
of the two-dimensional representation of the quadratic algebra to concrete calculations. In
sections 7 and 8 we show that as a result of the constraint equation for the existence of the
representation one can cover parts of the phaseBA, the complete phases And B as
well as the coexistence line (in terms of the definitions of(Bzfand Domany [13]). The
calculation of the density profiles and two-point correlation functions in the low- and high-
density phases is presented in section 9. One remarkable result is that the density around
the centre of the chain has a simple expression in terms of the parameters of the problem
and that it coincides with the mean-field results (which are derived in appendix F). The
density profile and two-point function on the coexistence line are presented in section 10.

Some by-products of our investigations are presented in the appendixes. In appendix C
we give some identities concerning normal-ordered expressiong-ascillators. In
appendix D we show how theeHP ansatz can be used to construct irreducible
representations of the quantum graup(SU (2)). We close with a discussion of our results
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and some remarks on the time dependence of correlation functions.

2. Fock representations of the quadratic algebra

We are interested in Fock representations of the most general quadratic algebra

%142 + x2AB + x3BA + x4B% = xsA + x6B + x7 (1)
AlV) =0 (W|IB=0 (W|V) #£0. (2)

Here x; are complex parameters and quantities of physical interest are given by vacuum
average values of monomials written in termsAfind B, e.qg.

(W|A"B™ ... B"|V). (3)

Obviously (2) generalizes the algebra of creation and annihilation operators agé its
deformations. As far as we know the problem formulated above has not been considered
in the mathematical literature (presumably because up to now there was no motivation to
do so). General quadratic algebras were studied in [16] but no Fock representations were
considered. We will show in the present work that solving the above problem allows for
the computation of concentration profiles and various correlation functions in the physical
problem of partially asymmetric diffusion with open boundaries.

One can ask the question about the conditions onxtfein (2) such that algebra
determines the vacuum expectation value (3). This implies that the system of equations for
words of length two, three, etc have solutions. Direct calculations show that an infinite set
of inequalities has to be satisfied

x2#0 X1X4 — x22 #0 xz(xg — x1x4) + (x3 — x2)x1x4 #Z 0 etc. 4)

In section 4 we will give, in a different parametrization, a simpler expression for these
conditions. Instead of solving linear equations for words of different lengths it is useful to
look for matrix representations of the algebra. Once those are known the calculation of the
guantities (3) is simple. We are interested for obvious reasons in the representations of the
smallest dimension because this is sufficient to compute the relevant quantities. As we are
going to show the representations of the quadratic algebra are infinite-dimensional unless
there exist certain constraints on the parameterd he simplest such constraintis = 0,

for which the representation is one-dimensional= B = 0. From now on we will take

x7 # 0. First we consider the casg # 0 # xs. We then define

A=""A B=2B )
in terms of which the algebra reads
1A% + 20AB + z23BA+ 4B = A+ B +1 (6)

where thez; are given in terms of the; and where

(W|B = A|V) =0 (W|V) #0. @)
It is convenient to define
__a_ X o _B__"
22 X2X5 22 X2
24 X4X5 X2X7 (8)
)7 = - - Zz = —

2 X2Xg X5Xg
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One can show (see appendix A) that through a similarity transformation the matriaed

1
B can be brought to a tridiagonal form with') = ? and(W| = (1 0: 0). Using this
fact together with equation (6) we obtain o

ax f1 0 0 0O 0 oO..
ainfi az f2 0 0O 0 O..
s 0 anfz as f3 0 0 O...
A= 9
0 0 01317f3 ag f4 0 0.. ( )
0 0 0 O(41’]f4 ds f5 0..
by aibfa 0 0 0 0 0..
S by az§fo 0 0 0 0...
5 0 f2 by  azkf3 0 0 0..
B = 10
0 0 fi bs oukfs O O... (10)
0 0 0 f4 b5 Ot5$f5 0...

The quantitiesy,, a,, b, and f,, are given recursively. First the,’s are to be determined
from
1+ Ao,
@, = At A a1 =0. (11)
1- néa,—1
Next one determines, andb, from

an+1 ) _ M El—ay) A+néa, Ay + i 1+é&a,
anrl - A+ UEOln 77(1 - an) bn 22 1+ noy
_ 1 —n(1+4 ray) — 1L+ néa,
M= A w)? — (L ka2 < “1+ nEa, — £+ Aa,») (12)

a1=0:b1.

Finally the f,’s are then given as
2 A+ 2775%—1 - 775053_1 5613 + nb,zl + ()\v - 1)anbn + (an + bn + 1)/12

2 =
Ji =171 _ 2nga, — AnEa? 1—2néa, — Anga (13)
fo=0.
For later use we give the first few values
1+
Oy = 1 a3 =
1-—né
1 1
gp= T by— 1tE (14)
z2(1 —né) 221 —né)
1 2 _ A+1 |: (1+§)(1+T})}
1= fz =3 2 >
22 25(1 — 2n& — Ang) (1—né)
We note that for. = —1 it follows that f, = 0 and we thus obtaionly two-dimensional

representationsike for one fermion (observe the appearance of an anticommutator in (6)).
The recursion (11) fow, can be solved by redefining

@, = nl§<1 + A+ e M"”) (15)

u
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where theu,’s satisfy the following recursion relation:

142 1
Unpl+ Up_1 = _;Mn up =1 Up=—— . (16)
VA +ng VA +ng

This is recognized as the special case- —(1+ 1)/2(1 + n&) of the recursion relation
for Chebyshev polynomialé/, ;(x) + U,_1(x) = 2xU,(x). Using the representation
U,(x) = sin((n — 1) arccosx) + ¢)/sin(¢) and taking into account the initial conditions
we arrive at the result
1 sin((n — 1)0 + ¢>)]
n = 2 1 + )\' + -
T [ VAT Sin (=20 + )
VanE — (1—2)? 1+
- 6 =arccod ————— | .
r—1 } 5[ 2Jn+ né]
The recursion (12) fom, and b, can be decoupled into recursion relations fQr =
Véa, + /nb, andb, = /Ea, — /1by:
Zanrl = gj,—Jrl&n + h;:—Jrl En+1 = gn—+1lgn + h,1_+1 (18)
Whereh,il =c1 %+ oo, g,j;rl = c3 £ ¢4, and
n(A+ ra,) A+ Ea,) + (A —néa,) (1 + nay)
o =-VE 2 2
22§ (L + Aety)® — (L — néay)?)
A+ E&a)(d—néa,) + A+ no,) (L4 Aay)
22(E(L+ ra,)? — (L — néw,)?)
409 A - niad)
né(l+ )‘an)z -(1- 7)50!;1)2
VIEO-+ DA+ 0. — D, + nEa?d)
775(1 + )Lan)z - (1 - 77‘§Oln)2
It is hard to simplify the recursion relations further. Using the expression (17) fay,tlse
and (19) one can derive formulae fof, b, and hencef,. The resulting expressions are
obviously very cumbersome. From the expressions (9) and (10) fand B it follows that
the condition for having am-dimensional representation is simpfy = 0. As one can
see from the form of the recurrence relations this constraint is a complicated function of
A, &, n andzy. This is the reason why we will use for apglicatiqns only the two-dimensional
representationf, = 0), for which the matrix elements of and B are given by (14).
Let us now consider the case = xg = 0. The cases where onkg or xg vanishes can
be studied in a similar way and thus will not be considered in detail here. The algebra for
casexs =xg=0is

17)
¢ = arctan[

Cop = —ﬁ
(19)

Cc3 =

Cqp = —

ZlAz + z0AB + z3BA + 2432 =1 (20)
wherez; = x;/x7. We define, as in (8)
f= 4 A= _23 =22 (21)
72 22 22

The infinite-dimensional representation of (20) is of the form (9), (10) with vanishing

diagonal terms, = b, = 0, Vn, wheren, &, A are defined in (21) and wherg and f, are

given by

_ 14+ doy_1

C 1—nEa,
2 g2 A+ 277500;—1 - 775053_1 1

= e g, — anga? 2oL — 20Ea, — wnéad)

oy a1 =0

(22)

fé=0.
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Apart from this infinite-dimensional representation there are two kinds of finite-dimensional
ones. The first kind is simply obtained by imposing the constrgint= 0 on the
parameterg;, which leads to the decoupling of aw x N block in the upper left corner

of the infinite-dimensional representation Afand B discussed above. The resulting finite-
dimensional representation is given in termshofx N matricesA and B with vanishing

diagonal elements.
The matricesA and B of the second type oV x N representation take the following

form:

0 f 0 0O 0 O 0..
(X]_?]fl 0 f2 0 0 0 0...
0 Olznfg 0 f3 0 0 0...
0 0 agnfs O f1 O 0...

A= 0 0 0 Ol47}f4 0 f5 0... (23)

ay-—21fn-2 0 fn-1
0 an-1nfn-1  an

0 aiffy O 0 0 0 oO..
fl 0 O[szz 0 0 0 0...
0 5 0 asxffs O 0 O...
0 0 f3 0 Ot4§f4 0 0...

B = 0 0 0 f4 0 Oé5§f5 0... (24)

fv—2 0 ay-1§fna

. e 0 fol bN
whereqa,, and f,, are determined by the recursion (22). The representation (23), (24) exists

provided that

afnE =1 (25)

The variables:y andby are obtained from the equations
by = &ayay
(26)

1
(—A — 2Enay_1 +nEad_) fi_1 = Ea% +nb% + (A — Dayby + o

We are going to close this section with two cases, for which the recurrence relations
can be solved in a trivial way.

o If A = —n& # —1 (this case is as we will see physically interesting) the following
simplifications take place fats # 0 # xg:
1+2np—A l+1n
ap =4 = ——————5 Vn>3 a1=0 ar =
221+ )2 ' 2T @+
1+28 -2 1
bomb=tTETR o3 20 b= TS
z2(1+1)2? 22(1+ 1) -
s o Ea2+nPP+(—Dab+@+b+1)/z @
fi=r= ¥n >3
(1+1)2
1 14+&54+n— A)
2 2
== = ——(1+ri+ ———
YT f3 72(1 4+ A)2 < 22(14+ 1)
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Note that in this case there exist orly ( f>» = 0), 3D (f3 = 0) and infinite-dimensional
representations! Iiis = xg = 0, one has an infinite-dimensional representation with
vanishing diagonal elements = b, = 0, Vn with

a, =1 Vn>2
1 ) 1 ) 1 (28)

2_ * _ — >
=, PEharn T nayae ™7

wheren, &, A are given by (21).
e O0=n=¢ L
Here it is possible to choose = AT, and

1—)\”71 1 1_)\‘;171
Oy = —(—— ap = —\ —(V——
1—A 22 1-A

f2—1 1-a" 1+11—A”*1
"\ 1= 2 1—2A
where we have assume@ # 0 # xg. A similar simplification holds ifxs = 0 or

xg = 0. Of particular physical interest is the case= 1, which exhibits additional
simplifications

(29)

, I nin—1
= — + . 30
22 i 22 23 (30)

n—1
o, =n-—1 a, =

3. The master equation and the quantum chain Hamiltonian

Let us consider a one-dimensional open chain ithites. On each site (k =1,2,...,L)
we allow for two configurations described by means of the variaplevhich takes the two
values 0 and 1. Fot; = 0 the sitek is empty (vacancy), fot; = 1 the sitek is occupied
by a moleculeA.

At time ¢ the probability of finding a certain configuration of molecules and vacancies
on the chain is given by the probability distribution

P (11, T2, ... TL|E) . (31)

If we assume that interaction between molecules is described by two-body processes only
(three-body processes are considered in appendix B), the time evolution of the system is
given by a master equation of the form

1

L—
aP;
Vi Vi+1
o = E E (Hes1)y, ro PL(TL T2 Tt Vs Vit ds Tht2s - -+ TLI)
k=1 Vi, Yi+1

= ) Pyttt = Y (ALY PL(Ty To - T, v D)
" V45
(32)

where the boundary contributiothg and’; describe injection (extraction) of particles with
ratesa ands (y andp) at sites 1 and.

m=(2 ) =5 ) 33)
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and where
! Vi Vi+1 _ -
Vi Vi+1 Z [Fk’k_‘_l]ﬁk:ﬁkil Vi=T1 J= k,k+1
(Hirsn)y, T = q Bebin | (34)
—[Crrsal 2T otherwise .

Ths Tk+1

Here M 11]% 2t represents the probability per unit time that the configurati@ny,. 1)

on neighbouring sites andk + 1 changes into the configuratigm, 7, 1) and)_" denotes
the sum where the terryy, 1) = (Br, Brr1) is excluded. The following processes are
included in the master equation (Wi0 a vacancyt = 0) and A a molecule(r = 1)):

Diffusion to the right: A+0—0+A (rate rid)
Diffusion to the left: 0+A— A4+0 (F )
Coagulation at the right: A+ A —> 0+ A (I‘ )
Coagulation at the left. A+ A — A+0 (F}é)
Decoagulation at the right: A +0— A+ A (')
Decoagulation at the left: @9 A - A+ A (Ffi)

Birth at the right: 010~ 0+4 (Igh (35)
Birth at the left: 0+0—- A+0 (F )
Death at the right: &A—>0+0 (Fgg)
Death at the left: A+0—0+0 (T3
Pair-annihilation: A+A—>0+0 (Féé)
Pair-creation: 00> A+A (IY).

Reaction—diffusion models of the type described above can be mapped to quantum spin
chains in the following way [6]: a basis of the quantum-mechanical Hilbert space
(isomorphic to the tensor produet:_, C?) is defined as

e} =lre...70) (36)
and the inner product is taken as

({ele')) = 1‘[81, o (37)
This induces a map of the probability distributiédh to a state in+

P) = ;Pm...mrmm (38)
and the master equation (32) then implies an imaginary-timed8aiger equation

a|P A

% =—H|P). (39)

Here H is a quantum Hamiltonian defined in terms of a bdsﬁg (which can be represented
as 2x 2 matrices with entriesE"ﬁy,; = 84, 8p5) Of quantum operators on thigh site of the
lattice via

H = Z(Hk e ELES L + (h)SEY + (h)SE) (40)

wherehy, h, and Hy ;41 are defined in (34). Note that in general the Hamiltonirwill
be non-Hermitian. It is easy to see that

(OlH =0 (41)
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where(0 | is given by

o= 1) =<®® (i)@g@(i)‘ (42)

Using equation (39) it follows from (41) thd0) is a left ‘stationary’ state. Assuming that
this is the unique left ‘stationary’ state and given a unique right stationary state

0) =" Pi({Thlr}) (43)
{r}

the average of the observab¥e(ty, ... 7.) = X({r}) is defined as

(X)=>_ X{rhP(r)
{r}
= (0|X]0) . (44)

An example with which we will be concerned in most of this paper is the case of
partially asymmetric diffusion, which corresponds to the choice of rates

[Tess+1ls = P [Mes+1]36 = g (45)

(all other rates are taken to be zero) the quantum HamiltoRlaobtained by the above
mapping is related to al X Z spin chain by a similarity transformation

L L
q77-1 00 | 114 oj-1 1 0
Hyx; = UHU Uzl_!(Ej + EMAQI )=1‘!(0 AQI-L (46)
il =

whereQ = /q/p, A is a free parameter and
1 =

[N

1 - - 1 1
EHXXZ -2 ;[2(0;’0”1 +0; 0/ +3(Q+Q Hojol
+3(Q -9 N(6f 1 —0)) — 3(Q+ Q]+ B+ B.
(47)
- A
Blzalza )/_01_ * —al+ Y +(x+y
2,/rq NIzl AJPG ' 2pq
5 — AS S
Bi=oil P _or Mg g P PO
NN AYPq 24

This is theU, (SU (2))-invariant quantum spin chain [17] with added boundary terms
B, and B;. Notice that the boundary terms contain nondiagonal contributiaﬁs (rLi)
with L-dependent coefficients. In the absence of the boundary terms the spectrum of the
Hamiltonian is massive. As is shown below the boundary terms will generate phase
transitions with massless phases. Although the Hamiltonian (48) can be shown to be
integrable [10], the Bethe ansatz so far has not been constructed due to the lack of a
reference state.

We note that the similarity transformation (46) does not change averages of observables

(01X10) = (OU'UXU'U|0) = (0| Xyl0)y . (48)

Thus zero-temperature equal time correlation functions of X7 quantum spin chain
and (stationary-state) averages of the partially asymmetric diffusion model are related in the
following way

(0f) =v(0lof|0)y = 2(z;) — 1
(o70y) =u(0lofo;10)y = Hzjw) + 1 — 2(z;) — 2(m) (49)

(szakz)conn = 4(ijk>conn
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whereonn denotes connected correlation functions. This means that all results concerning
averages in the partially asymmetric diffusion model obtained in this paper can be
immediately applied to the case of theX Z chain described above.

4. The DEHP ansatz

In a remarkable paper [12] it was shown that for the case of asymmetric diffusion the
problem of determining the probability distributid? (1, ... 7, ) for a stationary statecan

be formulated in a completely algebraic framework. We now briefly review the relevant
results. All rates excepT i11]3s = p and [k x11]19% = ¢ (k = 1, ..., L—1) are taken to be

zero, and the boundary conditions are chosen according to (33): particles are injected at sites
1 andL with ratese andé and extracted with rates and 8 respectively. The algebraization

of the problem of determining thennormalizedprobability distributionP,(z;...t.) of a
stationary state is performed in two steps: one first makes an aRgétz, ... t.) in the

form of a matrix-product state [12, 18]

L
Pu(ty,....t) = (W[ [@D + A - )E)|V). (50)
i=1

Here D and E are in general infinite-dimensional matrices afd| and |V) are vectors

connected with the boundary conditions. The normalization factor is obviously given by
Z; = (W|CE|V) C=D+E. (51)

In the second step the following sufficient conditions #)r to be a stationary solution of

the master equation are imposed

Z (1'1’1<k+1)2ty::11 Pp(T1, T2+« Te—1s Vis Vit Tht2- - - TL)

Vi Vier1

= Xz PL_]_(T]_ P N S ‘L'L) — X PL_]_(‘L']_ e Tk T2 - - ‘L’L) (52)

Y (VP (nTa. . L) = =X Proa(T2. .. TL)

Y1 (53)
D )V PL(ta. . Tayn) = xg PLoa(ta. . Ti1).

YL

Inserting (50) into (52), (53) leads to algebraic relations between the mabiessl £ and
leads to conditions for the action &f and E on |V) and(W| [12] (one finds thakg = —x;
and then sets; = 1)

pDE —gqED =D+ FE
(BD —8E)|V) =1V)
(Wl(@E —yD) = (W|
(W|V) #£0.

It is easy to see that farf = y 3§ no representations of (54) exist. This can be seen by
considering the inner product

(Wl(aE =yD)|V). (55)

Evaluating (55) once by acting to the left and once by acting to the right using that
aE —yD = —%(ﬁD — 8E) (which holds becauses = y§) we obtain

—%<W|V> (56)

(54)

(WIV) =
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which has the only solutionW|V) = 0. This means that from now on we can constrain
ourselves without loss of generality to the cag®# y§t. Moreover, one can show that
all vacuum expectation values

(W|DE™ ...D"™|V) (57)
are determined by (54) if the following inequalities are satisfied:
pap—qtys#£0  k=0,12.... (58)

The proof uses the construction of [15] and one can show that if (58) is satisfied a
representation exists even if its dimension is not the one of the smallest representation.
In order to obtainP; it is now necessary to find matricd® and E together with vectors
(W] and|V) obeying (54).

For later use we note that physical quantities like the curyemtensity profile(z;) and
two-point function(r; ;) can be evaluated in the following way [12]:

_ (W|CE1 V)
- (WICEV)
_ (W|C/TtDCE )
=T wich vy (59)
(W|C/=IDC*I-1pCL=*|v)
(W|CL|V)

(tiw) =

whereC = D + E.

It is possible to determine certain matrix elements of representations of the six-
parametric algebra (54) directly. This was done by Sandow [15] who then was able to
determine both the current (the computation of which involves only the mati@ in the
infinite volume limitL — oo and, remarkably, the phase diagram of the system. In order to
compute the density profile and the two-point function a much more detailed understanding
of the representations is needed. In order to study representation theory of (54) we introduce
two operatorsA and B, which act trivially on(W| and|V), respectively,

A=BD—8E—1 B=aE—-yD—-1
(W|B=0=A|V).

If A and B are known, one can gd? and E sinceafB # y§. A and B are seen to obey
the quadratic algebra (2) discussed in section 2 with

(60)

x1=(p—qay x2 = paf —qyé x3=pys —qap x4 =(p—q)Bsé
xs=(a+y)af—yd—(p—lyl@+d +alB+y)]
x6 = (B+8)(ap —yd) — (p—lBla+38)+3(B+y)]
xr=@+B+y+8)@B—-yd)—-(p—-—@la+B+y).
Note that the seven parametessare not independent, since they depend only on six
variablesp, ¢, «, B, v, §. Conversely the algebra (2) can be brought to the form (54) if
(x2 + x3)% — 4x1x4 # 0. (62)

One can easily verify that the inequalities (62) and (4) correspond to those of (58) for
k=0,1,23.

(61)

1 Actually there is one exception: i = ¢ andef = yé there exists a trivial one-dimensional representation
(D and E are numbers) withig =0, D = (§/B)E.
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We now observe that in the cage= 0 of completely asymmetric diffusion we have
A = —né& and the matricest and B (which we recall were defined a% = (xs/x7)A and
B = (xs/x7) B) have the simple forms given by (27). The origin of this simplification can be
traced back to the representation theory of quantum groups which also simplifies drastically
in the crystal basig = 0 [20]. Another case for whicld and B have a simple form is
p = g (symmetric diffusion). Here we have=n = 0, » = 1, and the representation is
given by (30). Finally, ifa = 8 =p —¢q, y =68 =0, we can define

a=|-P A =[] P B (63)
pP—9q pP—9q

and the algebra (2) is rewritten asgaoscillator algebra [21-23]
aa' — Qala =1 (64)

where Q = g/p. The vectorgV) and (W] turn into usual Fock vacué)| and|0) defined
by a|0) = (0ja’ = 0. Some observations about this case can be found in appendix C.

As noticed before in section 3, in the absence of boundary terms the Hamiltonian (47) is
U,(SU(2)) invariant. The ground state of this HamiltoniarZis- 1 times degenerate (recall
that L is the length of the lattice) corresponding ta/a+ 1)-dimensional representation
of the algebra. We demonstrate in appendix D that this representation can also be found
through theDEHP ansatz.

5. Further applications of the DEHP ansatz

It is an interesting question, to what extent the ansatz (50) can be used to describe more
general reaction—diffusion models of the type (35). Inserting (50) into the master equation
(53) for a general reaction—diffusion process defined(33)—(35) (note that we take all

rates constant throughout the bulk, i.e’.k,[ﬂ]“’s = Fi’g), we obtain the algebra

ys —
E? 0
H ED _ XOD — xlE
DE —X()D + )C]_E
D? 0
F8?+F‘1)§(?L ri 01 _1;61% 01 —Fég ey .
S B B A A
T T Teotfortln  ~Tio
—I'71 —I'11 —I'y1 Foo+To1+T10

whereas the boundary conditions (53) impose the following conditions on the veégtors
and(W|

> (h)H(WI[1D + (1= y) E] = —xr, (W]
Y1

(66)
D )V yD + (L= y)E]IV) = x4, V).
YL

Here h; and h; are given by (33) and thus (66) are independent from (65). From
equations (66) it follows thaty = —x;, so that we can choosey = —1, x; = 1 by
fixing the overall normalization in (53).

It is easily seen that only three equations of (65) are linearly independent. These can
be cast in the form

k1DE +1ED =D + E (67)
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k3D? = k4DE + ksED (68)
k6E?> = k7DE + kgED (69)

wherex; are given in terms of the rat@é;f. These equations can be viewed in the following
way: equation (67) is the basic requirement as it cannot be eliminated by adjusting the
rates, whereas (68) and (69) are additional relations in the algebra which are absent in the
simplest case where;. .. kg are chosen to be zero (by adjusting the rates). This simplest
case corresponds to partially asymmetric diffusion and will be studied in detail in what
follows. The important point is that the set of representations of (67)—(69) is a subset of
all representations of (67) for arbitrarf and«,. This means that in all cases physical
guantities can be determined by using a representation of (67) only, and then impose the
further relations on the matrix elements@fand E entering the computation. The existence

of solutions of the complete system (66), (67)—(69) is established for the simple case of one-
dimensional representations in appendix E. The question of existence of a two-dimensional
representation is still open.

6. Asymmetric diffusion: known results

Before we turn to the derivation of our results for current, density profile and correlation
functions of the partially asymmetric exclusion model we give a short review of some
important previously known exact results. So far exact results have mainly been derived
for the case of completely asymmetric diffusion with injection of particles at one boundary
and extraction at the other. In our notation this corresponds to the cheicg & y = §,
p = 1. This corresponds to the infinite-dimensional representation given by (29) with
0= A =n = &. The phase diagram for this case is of the form given in figure 1 [11-13].
Note that in order to make the connection to the partially asymmetric case easier we have
plotted the phases as functions«af(¢) = —1+ 1/« and«,(8) = —1+ 1/8 instead ofu
and . There are three main phases: a high-density phase A, a low-density phase B, and a
maximal-current phase C. Phases A and B are further subdivided jntd;Aand B, By,
respectively [13] (see below; note that we have changed notations by switching A and B
as compared to [13] in order to comply with the notation of [15]). Phases A and B are
separated by a line which is called the ‘coexistence line'.

The currents in the three phases are given by 1)

phase A: J =8(1-8)
phase B: J =a(l—«)

phase C: J = ;. (70)
The density profile in the centre of the chaih~ L/2, L > 1) is of the form
: : k+(B)

hase A (high density): (t;) = —————

p (hig y): (%) 1.
1

hase B (low density): (1;) = ————

p ( y): (7;) @ -

coexistence line: (t;) = o + (1 — 2a) (i)

phase C: (7;) = 3.

The subdivision of phase A into,Aand A, (and similarly B into B and B,) was proposed
in [13] and is based on an analysis of the behaviour of the density profile near the ends of
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Figure 1. Phase diagram of the completely asymmetric exclusion model.

the chain, which forL > j > 1 is of the form [12]

27/
phase & (5;) = P (1_205){“(/8)(1“404)”

T 1B (@) \ 1+ k4 (B)
phase A: () = 1-?:55()/3) B 4“5//8%;2}3)]j ((1 —12a)2 a —12ﬂ)2>
e -l re-w[in(n)] @
phase B:  (r-;) = 1+K1+(a> M[a(;;_j;/{;]m ((1 —125)2 Ta —12a)2>
phase C: (t;_;) = % -1- Sﬂ,l/Z)M]W .

Note that if 8 = % in phase C there are np-dependent correction terms in the density.

The mixed notation in terms af, (), . (B) anda, B has been chosen deliberately and is
based on universal behaviour in the partially asymmetric case (see below).

Correlation functions for the completely asymmetric case=(¢G = y = 3, p = 1)
ande = 1 = B were obtained in [14]. This corresponds to the poinrt @, («) = x4 (B)
in the phase diagram (this is th@-oscillator representation (63) wit@ = 0). In the
thermodynamic limitL — oo, k1 > 1, ko > 1, k; fixed, the connected two-point function
was found to exhibit an algebraic decay

1 k 1/2
(Tky Thy) — () (Thp) = —W |:1— <1— ki) :| . (73)

Finally, in [19] the density profile in the point = g (o, 8, y, § arbitrary) was computed.

This again corresponds to a simple representation of the algebra (see equation (30)).
Much less is known about the partially asymmetric diffusion process. The cukrint

the large£ limit was determined in [15]. In analogy with the case of completely asymmetric
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Figure 2. Phase diagram for the current on a large lattice far ¢. The regions above the
dotted line in phases A and B are accessible by finite-dimensional representations (see below).

diffusion discussed above, a phase diagram with only three different phases was proposed
on the basis of the form of the current. The relevant variables for determining the phases
arex, («, y) andk (B, 8), where

1
K+(x,y)=g[—x+y+p—q+\/(—x+y+p—q)2+4xy]- (74)

Note that for 0= y = ¢, p = 1 this definition reduces to the one far («) (see above). In
terms of these variables the current phase diagram exhibits the following three phases [15]

Phase Ak (8,68) > ki (a,y), k+(B,8) > 1. In the limit L — oo the current/ is

1 2
=2y —g)\B=IP D~ B+ +B+OVB—-8—p+a2+4s}.  (75)
Phase B, (o, ) > k4 (B, 8), k4 (o, ) > 1.
J = z(pl_q){(cx—y)(p—q) — @+ )P+ @+y)Va—y—p+q?+day}. (76)
Phase Ck,(8,8) <1,k (a,y) < 1.
J= %. 77)

These results (which are the same as the corresponding mean-field results derived in
appendix D) are summarized in the phase diagram shown in figure 2 [15].

We remark that in order to evaluate the current it is not necessary to first obtain a
complete representation of (54), only certain matrix elements are required [15]. As we are
interested in general correlators we now turn to a detailed study of representations of (54).

7. Finite-dimensional representations of the quadratic algebra and the phase diagram

As we have seen in the last section, the calculation of the density profile in the fully
asymmetric case was done by choosing the parameters of the problem such that one obtains
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an infinite-dimensional representation of a very simple form. We would like to carry out the
calculation of the density and the correlation functions (which up to now are only known
fora=B8=p=1y =68 =q =0, which corresponds to & «, (&, y) =« (B,8)) in a
large region of the parameter space. In order to do so, we will use the finite-dimensional
representations of the algebra. What kind of results can one expect? An inspection of (59)
suggests that if one write§ = exp(—H), H plays the role of a space-evolution operator
although|V) and (W] are not eigenvectors dfl. Two scenarios are possible. df is
diagonalizable, one expects an exponential decay of the density and correlation functions.
If C is not diagonalizable one can anticipate an algebraic behaviour. From the mean-field
analysis one expects an algebraic behaviour on the coexistence line and in the domain
ki(a,y) < 1 andxy(B8,8) < 1. As we will see, the finite-dimensional representations
will only access the coexistence line. Using finite-dimensional representations makes the
calculation of the correlation functions relatively simple. However, there is a price to pay,
namely one has to solve the constraint equation which has a rather complicated expression
in terms of the parameters g, v, 8, p, q.

Let us first investigate the question which regions in the phase diagram given in figure 2
are accessible by finite dimensional representations.

(i) One-dimensional representatioft.exists whenever the constraint = 0 is fulfilled. In

terms of the variables. the constraint reads
1

Kp(a,y)

It is completely straightforward to evaluate the current and the density profile in this case.
We find

ki (B,8) = (78)

aff —yd
wtBiyis
B o+6 _ 1 _ k+(B,9)
e By A6 lrk @) 14k
The second to last equality is established after some cumbersome computations using the
constraintx; = 0.

(79)

(i) Two-dimensional representatiorLet us consider theD representation in detail. The
constraintf, = 0 is expressed in terms of the's as
(x2 — x3)[x7(x3 — x1x2)% + x2(x2x5 — X1Xg) (X2x6 — X4x5)] = 0. (80)
Taking x, # x3 (x2 = x3 corresponds to the unphysical situatipn= —¢) we can cast (80)
in the form of a quadratic equation for
0= C)/2 +by +a
a = Bp*(@*(Bp +8q + pq) + aq(Bp — 8p — p* + 289 + pq) — 8q*(p — q))
b=pqepp(B—38—p+2q)+adq(B—38—2p+q)—Béq(2p —q) (81)
—apq(p —q) = 8¢°G +p —q))
c=—8q*(pB +q8 + pq)

which allows us to readily expregs as a function of the other five parameters. Note
however that the solutions of (81) still have to be supplemented by the conglitiorD,
which excludes one of the two roots of (81). The remaining one yields

y = Yitv2+y3
Ya
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y1=—p(—ap®p + afdp + afp’ — afdq + as’q — 20Bpq + 2a8pq)

y2 = —p(2Bdpq + ap’q — adq® — Bdq® + 8°¢° — apq® + Spq” — 84°) (82)
y3=p(aBp +adq +apq + 3q°W B2 + 288 + 82—2Bp + 28p + p? + 2q(B—5—p) + ¢>
ya = 20q(Bp +3q + pq) .

For the special casg = § = 0 (80) has the simple solutiof = —q + pq /(@ + q).
Using equations (74) and (81) one can show that the region of the phase diagram
accessible by theD representation is (without loss of generality we assyme ¢)

ki (B, 8) > ) (83)
K4 (Ol, J/)

This can be easily checked for the cage= § = 0, for the general case we carried

out a numerical analysis. The region described by (83) covers the area above the dotted
line in figure 2, i.e. most of the phases A and B. We note that for the case of symmetric
diffusion p = ¢ the two-dimensional representation does not exist. The infinite-dimensional
representation is given by (30).

(i) Three-dimensional representatiodn analogous analysis of the constraifit= 0 for
the three-dimensional representation leads to the same constraint (83). We believe this to
hold for any finite-dimensional representation as well.

8. Matrix elements of the two-dimensional representation

Using equations (5), (9), (10) and (14) and performing a similarity transformation with

1 0
S = 84
(0 «/XG/)C5> ( )
we obtain the following form for the matrice$ and B
_(0 A _(0 © _ (1! _
A—<o az) B‘(ﬁ b2> |V>—<O> (Wl=(1 0) (85)
where
2= by = 200 %6 ay = 120 T (86)
X2 Xy — X1X4 Xy — X1X4

Using the constrainf, = 0, a; andb, can be rewritten as, for example,
a0y — (ap —y8)(pB +qd) — (p — @)[pBla +8) +q5(B + v)]

p*ap — q?ys (87)
b, — @By (pa+qy) —(p—@lpa(f+y) +qyle+d]
? p*ap — q?ysé '
For actual computations, properties of the matrix
a+pB+y+4§ a+y B+4é
C=D+E= A B 88
+ aff —yd +aﬂ—y8 +a,3—y8 (88)

are of central importance. We have to distinguish between two cases#ifs or y # 6,
C can be diagonalized,

1 (40 1 B+8)f1 (@+ya
SCS —< 0 A_> S_aﬂ—y8<(ﬂ+5)f1 (,3+3)b2>
_a+p+y+s  a+ty
T T apys e )
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_at+B+y+9 B+
B aff — yé aff — yé
Note that the determinant det= (8 + 8) fi(A_ — —A,) is different from zero unless
A_ = A, (the prefactor vanishes only iff = 0, in which case theD representation breaks
up into 1D representations). In the casge = A_, C can no longer be diagonalized but only
be brought to Jordan normal form. The condition = A_ can be rewritten as
_(atylaz—(B+8by P—q
B af —y8  pPaP —q?ys
As the 2D representation does not exist for= ¢ we conclude that the only case in which
)\.+ = )\.7 |S |f

_ad+pla—pB)+4qs

B+q ’

A numerical analysis of the two conditions (83) and (91) yields that a necessary condition
for A, = A_ isthate = B andy = §, i.e. the coexistence line of figure 2.

A 2.

0 [By —ad — pla—B) —q( —y)]. (90)

(91)

9. Correlation functions off the coexistence line X # A_)

The density profilg(z;) is readily evaluated using (59), (88) and (89)

) (Wic/=tpct=i\vy  (W|S~1SC/-1s-1sDS-1sCL-is—1s|v)
T:) = =
! (W|CL|V) (W|S-1SCLS-1S|V)

S Ve o B P S A o -
<W|<g Ajl)D(B AL_,7>IV>

B : (92)
- L -
(s o)
where
-~ B+ (1
V)= B — s <1>
7 (@B —yd)
Wi= - 8)b
and
o+ 6+ aap —day
DZSDSl:( aﬂgyg af%i%v)' (93)

oaff —yé
Note that one of the matrix elements Df vanishes. This will have consequences for the
shape of the density profile and the two-point function.
The scalar products are easy to work out and lead to the following result for the density

profile
L—j L—1
(1j) = Q (wo + w1 em(g_J) + wy eXp<§>> (94)

1
Q=
[0 +B+y+35+ (@+y)azll(B+8)b2 — (o + y)azexp(L/{)]

where
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l=m<L>:”<a+ﬁ+y+8+w+®w>
e Ay a+B+y+5+(x+ya

wo = (B + 8)ba(a + 8 + aay) (95)
w1 = —azb; (af — y9)

w2 = —(a + y)ax(a + 8 +8b2).

Two cases have to be distinguished:

e (¢ < 0, which corresponds to the cage(w, y) > k+(B,6), i.e. phase B. In this case
the profile forL > ¢ is of the form

) =me e exp<j |;|L> * O(exp<_|¢L|)) (%6)

_ o+ 36+ aay
a+pB+y+d+(a+ya

_ —az(ef —yé) -
[ +B+y+5+ (ax+y)a](B +9)
The average density starts at the value at the left boundary, remains constant
throughout the bulk, and eventually exhibits an exponential increase to thewalue_
at the right boundary.

e ¢ > 0, which corresponds to the cage(«, y) < k. (B, 98), i.e. phase A. In this case
the profile forL > ¢ is of the form

where

(97)

C<

e s D)ol ) e
where
. o+ 8+ 8by
T a4 By 8+ (B+O)b
99
) ba(af — y9) (99)

= < O

[ +B+y+8+(B+8b](x+y)
Here the density starts at the valwe + c. exp(—1/¢) at the left boundary, increases
exponentially tom. and remains constant until the right boundary.

Let us now take a closer look at the expressions for the bulk densitiesnd m ..
and the correlation lengttt|. It turns out that they areuhiversal in the sense that they
depend only on the two variables («, y) andx, (8, 8) instead of on all five independent
parameters, 8, 8, p, g. We start withm . andm... One can show that

__ 1t m. = k(B0 (100)
1+ ki (a, y) 1+ki(B,9)

The equality of (100) with (97) and (99) is established analytically only fer § = 8, and
numerically to machine accuracy for the general case. As we will now argue, we believe
(100) to hold not only for theD representation but in general for phases A and B: in
appendk F a mean-field analysis of the partially asymmetric diffusion process is carried
out, andm . andm.. in phases B and A are determined. We denote the corresponding results
(see appendix D) by:_. e andm. ve. It is straightforward to demonstrate analytically
that

m

1 k4(B.9d)

- m- = 7 . 101
1+ 14 (a, ) M 1 k(8.9 (101)

mo MF =
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This shows that the mean-field theory result is universal in phases A and B, and in addition
is exact whenever thep representation exists. Based on this observation and the results of
[12] for 0 = y = & = ¢ (see equation (73)) we conjecture that (100) holds true throughout
phases A and B.

Figure 3. Plot of the bulk densities:.., m . in phases A and B in the region accessible by the
2D representation.

The value ofm. amdm_ as a function ofc, («, y) and« (B, ) is shown in figure 3.
Accordingly phase A is identified askdgh-density phaswith m. > % and phase B as a
low-density phasevith m_ < 3.

Unlike the quantitiesn. andm. the coefficients. andc. of the exponentials anaot
universal in the sense that they are not only functions.gfy, y) and«, (8, §). However,

the correlation lengthe | in the exponential can be expressed as

2
exp(l) — K+(as V) <1+K+(ﬁra)> ) (102)
é‘ K+(ﬂ78) 1+K+(d, )/)

This shows that the correlation lengt$| diverges whenc, («, y) and k. (8, 8) approach
the coexistence line:z — oo when approaching the coexistence line from phase A,
and¢ — —oo from phase B. It is interesting to compare (72) with (102). Surprisingly
enough, for phasesfand B the 0= y = § = ¢ correlation length has precisely the
expression (102). This ceases to be the case for phasasd\B,. We would like to stress
that although the mean-field values (100) are exact, the correlation lergjtten by (102)
cannot be obtained in the mean-field approximation.

The two-point function can be evaluated in a way analogous to the case of the one-point
function discussed above. After some straightforward computations we obtain

() =@ (a)g + wg exp(L;k) + ws exp(ll_gj_l) + ws eXp<L;2)) (103)

where

1
~ R2[(B+8)b2— (a + y)azexp(L/¢)]

/
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2
o +6+ aa
ws=(B+ &b —
aff —yé
8
ws = —aghy LT O T (104)
aff —yé
o+ 8+ 6by
g = —a2b2
oaff —yé
2
o+ 8+ 6b
we = —(a+pag — "2 .
aff —yé

Again we have to distinguish between two cases.

e ¢ < 0O (low-density phase). The connected two-point function in the lérdenit is
given by

(tim) — (5)(m) = co(m= —m_) exp(L;j) -2 exp(ZL_;_k) (105)

It is different from zero only very close to the right boundary, from where it decays
exponentially.
e ¢ > 0 (high-density phase).

() — () = c-(me —m>) exp( _k;_ 1) -2 eXp<_j_§k+2) (106)

Thus the connected two-point function in phase A is different from zero only very close
to the left boundary, where it exhibits an exponential behaviour.

10. Correlation functions on the coexistence lineX, = A_)

For the casex = 8, y = § we havex, (a, y) = k. (B8,8) > 1 with

(e, y) = \/j (107)

and are thus on the phase boundary between the high-density phase A and the low-density
phase B. Here we have taken into account the constraint (81) foedttrepresentation,
which can be solved with the result

yz—p+(a+q)\/§. (108)
The matrix elements of the matricésand B in (85) are found to be
a2=b2=—if1=\/7—1—a*/m (109)
q q/p
which leads to the following form for the matrix:
1 P
C=——"(2+a)l + ayP) P=< 1 '). (110)
o—y i1

The matrix P has the property?? = 0, which is important for carrying out the calculations
below. Using the fact thaP? = 0 it is easy to show that

r R+a"t (241 —kay ikas
= (@ — )k ikay 24+ (1+k)az (111)
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which implies that the normalization is given by

2+a)tt
(wictvy = %(2“1—@@). (112)
(@ —v)
Using equation (112) we can easily evaluate the current
a—y 24+ 2—-L)az
= . 113
/ (2+a2)<2+(1—L)a2) ( )
In the thermodynamic limit this simplifies to
a—y 1-9 q 1
= = — = |=—= 114
2+ap Pi1v o Q p ki, y) ()
which, in turn, can be shown to be equal to (76).
The density profile is
(7)) = (@ +y)2+ax2— L)) +d5(y — La) (@ — y)a3 i
! (@ +y)2+a2)(2+ (11— L)ay) (@+y)2+a)2+ (11— Lyay)”
(115)
In the thermodynamic limitj, L — oo, j/L = x fixed, this turns into
1-—
< < (116)

=170 10"

This means that fop > ¢ the density increases linearly fro®/(1+ Q) at the left-hand
end of the chain to A1 + Q), whereas fogy > p it decreases linearly fro@/(1+ Q) to
1/(1 4 Q). Clearly the profile is symmetric under simultaneous interchangeardg and
left and right as it should be. The most remarkable feature of the profile (116) is the fact
that it is independent of the injection/extraction rateThe only relevant parameter is the
ratio p/q of the diffusion rates to the right and to the left. This fact is probably a feature
of the particular representation we work with since in the completely asymmetric case the
current and density profile on the coexistence hnedependent on the boundary condition
a (see equation (71)), and we expect that in general the current and density profile in the
partially asymmetric case will depend on the boundary conditions as well.

The two-point function can be determined by using (111) in (59) and is found to be of
the form

(tjT) = w7 + wgj + wek (117)
where
oy = @t ¥)’[2+ ax(3— L) 4 ad] + 2a3[y? — La(a + y)] + a3[y? — La?]
(2+a2)?(2+ az(1 - L)) (a + y)?
(@ —paja+y +ya)
2+ a)?2+ax(1— L)) (o + )2
_ (a — y)a5(e + y + aa)
2+ a2+ ax(1- L)@ +y)?
In the limit j, k, L — oo with j/L = x andk/L = y fixed this simplifies essentially
2
Q ) n 1-9 4 Q(1-9)

(TLxTLy) = (1+ 0 2 2
(1re)  (1+9)

(118)

wsg

w9

(119)



Representations of the quadratic algebra 3397

Using equation (116) we finally arrive at the following result for the connected two-point
function:

1-0\°
(tratry) — (Toa)(Try) = (1+Q> x(1—y). (120)
Like the density profile the connected two-point function is independent dt takes its
maximal value((1 — Q)/2(1+ Q))? in the middle of the chain, and decreases to zero at
both boundaries. It is interesting to note that a similar expression for the connected two-
point function was obtained for the completely asymmetric (particles hop only to the right)
deterministicexclusion model with stochastic boundary effects [24].

11. Summary and conclusion

In this paper we have first presented the Fock representations of the quadratic algebra.
The representations can be either infinite-dimensional or finite-dimensional. Each finite-
dimensional representation is characterized by a constraint on the seven parameters of
the algebra. The matrix elements of the two generators of the algebra are given by
recurrence relations. Only in the cases where these relations can be solved in a simple
way is the corresponding Fock representation useful for studying the physical problem of
partially asymmetric diffusion with open boundaries. Quadratic algebras with more than two
generators, which are relevant for many-state problems, will be presented elsewhere. The
structure of the associative algebra is different for these cases [28]. The boundary conditions
define representations of a different type as compared to the Fock representations considered
here.

The quadratic algebra appears in theHp ansatz for the steady-state probability
distributions of one-dimensional reaction—diffusion problems with two-body rates and
injection and extraction of particles at the ends of the chain. As shown in section 5 and
also in [3, 25], the quadratic algebra appears also for some more general reaction—diffusion
processes. As also shown in the present work, if one considers three-body rates, cubic
algebras occur. We have not studied the representation theory for that case.

We have used theD representation of the quadratic algebra to compute the density
profile and correlation functions. Both have a special dependence on the coordinates (see
equations (106) and (105)). The parameter dependence is also peculiar. Certain quantities,
like the density around the middle of the chain or the correlation length, depend on the
parameters, 8, v, 8, p, ¢ only through two functiong, («, y) and« (8, §) defined in the
text. Our results and those of [11-13] suggest that the density in the bulk is given by
the mean-field prediction in the thermodynamic limit. Again from our results and those
of [11-13] it looks like the correlation lengths again are ‘universal’ (they depend only on
k+(a, y) andki (B, 8)) in regions A and B of the phase diagram.

By means of (50) our results (105), (106) and (120) for the connected two-point
functions can be directly translated into tki&( Z quantum-spin chain (47) with non-diagonal
boundary terms. This yields new and nontrivial results for correlators iX i chain with
boundaries. We have not considered the problem of time-dependent correlation functions.
Some recent numerical results of Bilstein [26] can give a hint in this direction. He studied
the finite-size scaling behaviour of the energy gaps of the quantum Hamiltonian. It turns
out that in the low- and high-density phases the system is massive. In phase C (see figure 2)
the system is massless. Both real and imaginary parts of the energy gaps vanish’itke
whereL is the size of the system. The coexistence line is also massless but features a less
simple length dependence.
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Finally, as a by-product of our work on tlEHP construction, we have given a simple
way to construct irreducible representations of thgSU (2)) quantum group.
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Appendix A

We would like to show that in the Fock representation of the quadratic algebra (2) the
matricesA and B can be written in tridiagonal form. This is a property of the Fock
representation only, and is independent of the parameterdnstead of presenting the
general proof, we give two examples which will help the reader to see the mechanism behind
the proof. We start with thed representation. We choogg) = ((1)) and takgW| = w1, w»

with wi # 0 such thatW|V) # 0. We then perform a similarity transformation

S = (é Oi) S|V) =1v) (W[S™ = (w1, —aws + wp) (A1)

where we choose = w,/wi andw; = 1, which results iKlW| =1, 0 and(W|V) = 1.
In this basisA and B now must be of the form

0 ap 0 0
A= B = . A2
< 0 ax ) ( ba1 b2 ) (A2)

We now perform another similarity transformation

1 0 _
S=(O ﬂ> (WIS =W sIV)=V) (A3)
where we choos@? = a1,/b»1 and find two equivalent representations
0 =+ a12b21 0 0
A= B = . A4
(0 az ) <ﬂ:valzbzl bzz) (A4)

Here we have assumed that bath andb,, are different from zero. One can show that if
a2 = 0 or bp; = 0 the algebra (2) yields the condition = 0, which corresponds to the
1D representation and thus the representation is not interesting. Renaming the entries of
A and B we arrive at

0 f 0 0
A:(O a;) B:<fl b2>. (A5)

Let us now consider thaed representation. We can repeat the similarity transformations
from the 2D case to bringA and B to the form (f] # 0)

0 fi & 0 0 o
A= <0 a, a/23> B = (fl’ b, b’23> (AB)
0 a3 ag g1 by by

where|V) = (é) and(W| = (1, 0, 0). Taking the further similarity transformation

1 0 0 ,
S = (o cogh)  sin() ) tan(o) = 51 (A7)
0 —sin@) cog6) h
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we get
0 i O 0 0 O
A= (0 az aza) B = <f1 b2 bza)- (A8)
0 azy daszs 0 b32 b33
Finally, by means of a diagonal similarity transformation we can bArgnd B to the form
0 1 O 0O 0 O
A=<0 a fz) B=<f1 by kz)- (A9)
0 hz as 0 f2 b3

This procedure can be generalized to any dimension of the representation. We can thus
search for representations of the quadratic algebra starting with the tridiagonal form

0O i 0O 0 0 0 O..
0 as f2 0 0 0 O..

A=| 0 hy a3 fz 0 0 O... (A10)
0 0 h3 ag f4 0 O...
0O 0 0 0 0 O Q..
fi b» ko 0O 0 0 O..

B=|0 f, b3 ks 0 0 O... (A11)
0O O f3 by ks O O...

Appendix B

In this appendix we discuss a generalization of bEeip formalism to chemical processes
of the types given in (35) that incorporatieree neighbouring sites. By construction all
models discussed above are contained in the present formulation. From a physical point
of view this generalization is quite interesting. For purely diffusive processes it allows us,
for example, to let particles hop to the next-nearest neighbour site if the nearest neighbour
site is unoccupied. In the corresponding traffic-flow picture this corresponds to letting cars
move faster or slower depending on whether the road ahead is free for a long or a short
distance.

We consider a master equation of the form

9P L2
Yies Vi1, Vi+2
0= o = E E (He1h+2),, ron s PL(TL T2 Teeds Voo Vit Ds Vir2s Tht3 - -+ TL)
k=1 Vi Vi+1:Vi+2
- E (h12) 2 PL(1y2t3. . . T1) — E (hp—a)V 2 Pr(ty. .. T—2YL-1V1)
yiv2 YL-1YL

(B1)
where

! Yies Vi1, Vi2 I .
Vi Vir 1, Vi2 Z Fﬂk,ﬁkil,ﬁk:z vi=tv Jj=kk+1lk+2
(Hk.k+l,k+2) RIS — L B Bren Brsz (B2)

Tho Th+15 Th+2
_r‘VkaVk+1aV/~'+2 else
Thes Th+15 Th+2 )

Here Fg‘f;}fy/ is the probability per unit time that the configuratide8y) on three
neighbouring sites changes to the configurati@i’y’). Following the analysis in section 1
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above we demand for the probability distribution in the bulk that

Vi Vk+1: Vi+2
- E (Hk,k+1,k+2)rk,rk+l’rk+2 Pp(T1, T2« . Thk1, Yi» Vil Vit2s Thg3-- - TL)
Vi Vi+1, Vit+2

= Xg PL_]_(T]_ e e Th—1Tk+1 - - - ‘L’L) — xrkHPL—l(Tl e Tk T2 - - - ‘L’L)
Fyo Pra(tr. . eaTegr - TL) — Yoo Pr—1(T1. . 1 Tha3 .- . TL)
F2 Pr—1(t1. . T Tkg2. .. TL) — 2, PL—1(T1 . . Tep1 Tk 3. . - T1)

Frn, Pr o(ty.. T 1Thy2. .. TL) — toi1Tiso P o(ty.. . Tk Tpg3. .. TL) - (83)

This ensures that there will be no contribution from the bulk to the right-hand side of (B1),
as all terms will cancel when summed ov@rk + 1, k + 2). As compared to (53) it is now
possible to include terms containing probability distributidhs , with two fewer particles.

The right-hand side of (B3) can be simplified by introducing the notation

Wb, = Xp, + Vb, Vb, = b, — Xp, Ap, = —[hp, — Vi - (B4)
From the boundaries we get the conditions that

Z(hlz)’,’ll%f PrL(y1yet3...11) =ty Pr_o(t3...71)
Yiyz
Fuo PLoa(t2...70) — A, PL_1(T173. .. T1)
(B5)
Z (hp—a)V 7 Pr(ta. .. To—2Vi-1YL) = —ty 4o PL2(t1... T1-2)
YL-1YL
—tyy  Proa(te.. T 2t) + A Proa(T1.. . T—1) .

Here we have allowed for arbitrary processes of the type introduced in (35) to occur on
the first two and last two sites of the lattice. Putting everything together we arrive at the
following algebra:

D3 0
D?E wiDE + viDE + AgD? + t11E — t10D
DED w1ED + voD? + M DE + t19D — to1 D
_ar| ED? | _ | #oD2+vED +MED +101D — i E (86)

DE?2 | = | t1E? + voDE + ADE + t10E — tooD

EDE woDE + viE? + AED + ty E — tioE

E?D woED + voED + AME? + tooD — to1 E

E® 0
where
111 110 101 011 100 010 001 000
Hlll Flll Flll 1_‘lll 1_‘111 F111 I‘111 Flll
111 110 101 011 100 010 001 000
IjllO HllO F110 F110 F110 1_‘110 IjllO 1_‘110
111 110 101 011 100 010 001 000
1—‘101 l—‘101 H101 l—‘101 1—‘101 1—‘101 1—‘101 l—‘101
111 110 101 011 100 010 001 000
H = 1_‘011 l—1011 1—‘Oll HOll 1-‘011 1—‘011 1—1011 l—1011 (B?)

- 111 110 101 011 100 010 001 000
FlOO FlOO l_‘lOO 1_‘100 HlOO F100 I‘lOO FlOO
111 110 101 011 100 010 001 000
IﬂOlO IﬂOlO F010 F010 1_‘010 HOlO IﬂOlO F010
111 110 101 011 100 010 001 000
1—‘001 1—1001 1—‘001 1-‘001 1—‘001 1—‘001 HOOl 1—‘001

111 110 101 011 100 010 001 000
1—1000 l—1000 l—‘OOO 1-‘000 1-‘000 1—‘000 1—1000 HOOO
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It is clear that only seven of the eight equations in (B7) are independent. The boundary
conditions are rewritten as

D (1?2 (WD + (1— y)Elly2D + (1 - y2) E]

Yiy2
= (W|[(tyr, + pr,[22D + (1 — 2) E] — A [11D + (1 — 1) E]]
> ) e aD + A=y D Ellye D + (L= y0)EV)
YL-1YL
=[—toym +rglt1D+ A= 120 E] — pr, [t D+ (L= 1) E]]|V).

Note that the algebra (B7) is cubic and that the conditions at the boundaries are quadratic
in D andE.

If we constrain ourselves to diffusion processes only, the system (B7) decouples into
two sets of two independent equations

D’E )
. DED ) = —ADE + AgD* + t11E — t10D
! ED? w1ED + voD? + A DE + t10D — 101D
DE? (B8)
H,( EDE ) = [,L]_Ez — uoDE + t1oE — tooD
E2D woDE + v1E? + MED + tnE — t1oE
where
H, — (~Tiot~Taxl I'1% i
110 _plor_p1o1 o1l
101 110 011 '101 (89)
100 100 010 001
Hy = (‘Fomlgorom 01r;)100 010 F%)%%) .
o0 —I00—Tooz To1o

In order to demonstrate that there exist solutions to these equations we will prove the
existence of a one-dimensional representation for the special choice of boundary conditions

(h) = —a = —(h1)3) (hp)go=—B = —(hp)i1 (B10)

which correspond to injection of particles at sites 1 and 2 with probalailitiyboth sites
are empty, and extraction of particles at sifes- 1 and L with probability 8 if both sites
are occupied. The one-dimensional representation exigds=# £ = 1 and

 p 110, +110  +101  +101 _ ~100 , ~100 010  ~001
a=p=Ti5+ o117 — 10— 110 =To10 + Toor — o0 — I'ioo

(B11)
110 |, 1~011 _ ~101 , 101 100 , ~001 _ 1-010 , -010
Iio1 + io1 = Toan + T'i1o Fo10+ oo = Fopr + T'100-
The corresponding probability distribution is trivial
1
PL(‘L']_...'L'L) = - (812)

2L

which means that all configurations are equally represented. Although the existencemf the
representations is a nontrivial fact, the corresponding physics is not particularly interesting.
It would be very interesting to construct finite or infinite dimensional representations and
use them to compute currents, density profiles, etc.
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Appendix C

In this appendix we consider the special case-Qy = § anda = 8 = p — g of the
algebra (54). As was shown in (63) the quadratic algebra reducegtoszillator algebra.
We introduce the following notation fo@-numbers

1-0"
=7 (C1)
and Q-binomials
(o) = (n)(n—1)...(2) _ M- 0" .
! n—pHn—p-1}...{2{pHp —1}...{2} P A-09[TZa-o0H
(C2)

In order to compute the current or correlation functions a convenient representation of
CcN = (D + E)V is required. In terms of anda’ we find

1/ 2 a+a \" 2 \"&. . (VI=0Y
ch( + > =<) cla +“< > C3
pYM\1-0 JVi-0 r—aq) = vD@+a) 2 (©3)

In order to evaluate, for example, the normalizat{ofiC|0) it is convenient to decompose
powers ofa + a' into normal-ordered expressions defined via

Hatah) =) cr(Qal"a"r. (C4)
p=0

The decomposition is of the form
[+/2]
(a+ah)" =Y M™:(a+a)y=2":. (C5)
m=0
Using the identity
(a+a") :@+ah" = (a+a")"*: +n}: (a+a")"L: (C6)
one readily obtains recursive expressions Ff"
n—3 n—5

n—1
MP =1 MP=3u MP=)uM, MP=3 WM, ... (C7)
=1 =1 =1

We first note the result for the casés= 1 (ho deformation) an@ = 0

nl

m—1
m n | | '
M}’(l )|Q:l= ( >k20(2k+1)=(n_ )I ( )”

(C8)
(m) _ n— 1 _ n — 1
leo=("07) = (523)
After some tedious computations we find for arbitrady
MO — n — {n}
n 1—
¢ (9)

1 -1 -3
Mo =gy [”(n 2 " 2}) - {”}<{n{2} o _3})]

We did not succeed in obtaining a closed form #6f° for generak. The difficulty can be
traced back to the recurrence relation (C7) which although it is written entirely in terms of
Q-numbers does not haw@-number solutions (the sum @f-numbers is not @-number).
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Appendix D

In this appendix we would like to show that tbeHP ansatz gives a new way to construct
irreducible representations of the quantum gr@ggSU(2)) and that the quantum plane
appears in a natural way. We consider the special casé @& n, A =qg/p,z2 = p/(p — q)

of (54). The boundary conditions are taken such that = §, then the limita — O,

B — 0 is performed. For &= ¢« = 8 = y = § the XXZ quantum spin Hamiltonian (47)
corresponding to the diffusion process is invariant under the quantum alggbfé/ (2))

([17, 6] and references therein). The stationary state (50) is no more unique since the ground
state of the ferromagnetic chain(s + 1)-times degenerate corresponding to a multiplet of
sl,(2). As the boundary conditions (54) become ill-defined in the cased0= g =y =§

we carefully take the limitr — 0, 8 — 0 with 0=y = § as follows:

o = f — E D =D E =cE
e d (D1)
(WIE = e(W| D|V) =d|V)
where D and E are seen to obey the quantum plane equation
DE=0’6b =1, (D2)
p

The quantum-mechanical state corresponding to the stationary state of the diffusion process
is obtained by applying (38)

;i L—k gk Z Q2(11+lz+ ig— (k+k2)/2)1_[0” EX ) (D3)
k=0

i1<ip<-<iy

where YN is a normalization factor. Note thd®) is a linear combination of. + 1
independent wavefunctions. In order to get the ground state of & chain (47) we still
have to perform the similarity transformation (46), which changes the probability distribution
of the stationary state (50) into

~

L
i— — (1_Ti)
(ng(n/\Q "D+ (L-w)E)|V) = AFQH* 1)/2<W|H(nD+ A1 E>|V>~

(D4)

This yields the following result for the similarity-transformed stg;, which is the ground
state of thelU, (SU (2))-invariant X X Z Hamiltonian (47)

k

L
10y = /%/ALQL(L—l)/ZZA—de—kek Z Qi1+i2+---+ik—k2 Haiﬂ M) (D5)
k=0

i1<i2<~--<ik l:]-

We note that théth term in the sum is proportional to the stas)*| 11 ...) obtained by
acting with the quantum-group generators

L
- = Z QIXIE g Q8 Xnera % (D6)
=1
We believe that using theEHP ansatz in order to get irreducible representations of quantum
groups may have other applications.
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Appendix E
Here we address the problem of existence of solutions to the system of relations (33),
(66)—(69). It is convenient to define symmetric and antisymmetric combinations of rates

PE=riarl  ri=r@Ery  ri-r$ery

+4 (E1)
r#=ri+rt  rE_r®yr® A-%T°%
d 10 01 10 01 /3 +y

Note that due to positivity of the rates all symmetric combinations are automatically positive.
With

_ B+y D “ +46
N off —yé N aff —yé
it is straightforward to show thai representations exist under the condition that

(E2)

I 40, =rjA+T A
ACR+TH =18%A+ 1 (E3)

2
ToA AT, + 2T, + T, + T, = -5+ ATY.

It is obvious that one can choose the 12 rates such that equations (E3) are satisfied.

Appendix F. Mean-field analysis

In this appendix we give a summary of the mean-field analysis for the partially asymmetric
diffusion process on a lattice with sites. Our discussion follows [11,27], which deals
with the completely asymmetric case. The particles hop with pafe) to the right (left)
and are injected (extracted) with rate(y) at site 1 and raté (8) at siteL.

In a stationary state the density at sjtés time-independent, which implies

d(z;)

0= o - (g — p)(Tj—1t) + (p — @) (TTis1) + pri—1) +q(tj41) — (p + (7). (F1)

Denoting (z;) by #; and decoupling the two-point functions;r;) = f;z leads to the
following set of mean-field equations:

Pti-1+qtiv1 — pti-aty — qtitiy1 = (p + @)ty — ptitiya —qtiti-1 j=2...L—-1 (F2)
a(l—11) +qr2(l—1) = yt1 + pta(l—12)

(F3)
Bty +qty(1—tp 1) =01—1t) +ptp1(1—1).
The bulk equations (F2) can be rewritten as
liy1tj = — 4 Lit1 + P 1 +c (F4)
P—q P—q

wherec is an arbitrary constant (related to the curréit The net mean-field current from
site j to site j + 1 is defined as

J=ptj(1—tj31) —q(L—t))tjra=—(p — q)c (F5)
and is independent of position as it should be for a stationary state. If we define

pP—q q
sj = i+ (F6)
! p+q<’ p—q>




Representations of the quadratic algebra 3405

the new quantities; are seen to obey the recursion

’ 2
=1 o P _<p—q>c
! sj (r+q9)? \p+g
_ patqy+pq—(p+g)?c _p8+aB—pg+(p+a’c

P+qg)a+y) (P +q)(B+9)

We note that 0< ¢’ as otherwises; > 1, which is unphysical as & #; < 1, Vj (which
impliesq/(p+q) < s; < p/(p+q)). As for the completely asymmetric case we now
have to distinguish three cases:

(F7)

S1 SL

’ 1

e C > 5
In this case the recursion has no fixed point apdvould eventually turn negative,
which leads to an unphysical solution. Thus we can exclude this case.
’ 1

e C =
This case corresponds to the maximal current ph@sen the phase diagram (see

figure 2). The current is given by (see above)

(pP+9)?*, prg  p—q
= - - F8
(p—q)c P—q 4 (F8)

which is the same as the exact result (77).
1

J==(p—9q)

e (<
4
In this case the recursion (F7) has two fixed points
sy = ;<1i«/1—4c’>. (F9)
Writing s; = ~/c’uj;1/u; we see that the;'s are subject to the recursion
+ L (F10)
u; Uj_1= —F—=Uuj
j+l j-1 Jo J

which is recognized as a special case of the recursion relation for Chebyshev
polynomials. Equation (F10) is solved formally as

(@) = sin[( 16 + ¢] 0 arcco{1 > (F11)
Up = n— =
2V

(note thatd is complex) which leads to the following expression §r j =n...L
_~ sin[hf +¢]
"GN — Do+ @]

Using the two boundary conditions (F7) in (F12) completely fixes the valueg of
and ¢’ as functions ofx, 8, y, §, p andgq. For simplicity we introduce the notation
s1 = dy — doc’ andsy = ds + dsc’. The boundary condition far; implies that

2(2dy — 1) cog(0) — do

(F12)

cot¢) = sin(26) (F13)
whereas the one for, yields
cot() = 2cog6) oS LO) — (ds + 4d3 cog(0)) cos[(L — 1)6] (F14)

2 cog0) SiN(LO) — (ds + 4dz co2(9)) sin[(L — 1)6]
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Equating (F13) and (F14) we obtain
0=d1(1—ds)sin[(L + 3)0]
+[(2dy — d2 — 1)(1 — d3) + 2d1(1 — 2d3 — dy)] SIN[(L + 1)0]
+H(2dy —do — (L — 2d3 — dy)
+(dy — D(1 — d3) — dids] sin[(L — 1)6]
—[(@2dy — d2 — Ddz + (1 — d1)(1 — 2d3 — dy)] sin[(L — 3)0]
+d3(1 — dy) sin[(L — 5)6] . (F15)

In the largef limit (F15) turns into a fourth-order polynomial equationzin= exp(2i6)

(6 is complex). The polynomial equation can then be solved explicitly f@nd thus")

as a function oty, 8, y, 8, p, q.

However, there exists a much simpler way to determine the mean field current [11]: in
the low-density phase B we start out infinitesimally close to the unstable fixpaimne.

s1 = s_+e&. The density stays at. throughout the bulk and only deviates towasgsat

the right end of the chain. Using the fact tledt= s_(1—s_) in the expression (F7) for

s1, and then setting; = s_ immediately yieldss_, and thus alse’, as a function ofp,

g, a andy. Inserting the resulting expression fdrinto (F8) then yields the current as

a function ofw, y, p andg. The result found is identical to the exact expression (76).
An analogous analysis can be carried out in the high-density phase A. Again the result
is identical to the exact expression (75)

We also can use mean-field theory to determine the density profile in phases A and B.
From our discussion above it is clear that in phase B the density profile in the bulk is
essentially constant and equal to the value of the unstable fixed point (we switch back from
the s; variables tor; variables)

t_=1<1_m>=1(1_ﬁ). (F16)
2 2 P—4q

Analogously, in phasel the profile in the bulk is constant and equal to the value at the
stable fixed point,

1 4
t_,_=2<1+ 1— JA). (F17)

Using the expression for the currents these values can be determined explicitly

1 1 [(p—q)?
=tmonE= 5= u—Ot(ocJr)/)/q(oz,7/)+J/[Ot+)/+p—61]
P—q 4

1

1 _ 2
Iy =:m>.M,:=2~|—p_q\/(p4q)—ﬂ(ﬁ+8)K+(,3,8)+5[,3~|—8+p—q].

These expressions coincide with (100). Finally, we note that the mean-field result for the
correlation lengtht does not reproduce (102) and is incorrect.

(F18)
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